Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier

    Jun Wang1,2, Linxi Zhang1,2, Hao Zhang1, Funan Peng1,*, Mohammed A. El-Meligy3, Mohamed Sharaf3, Qiang Fu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1281-1299, 2024, DOI:10.32604/cmc.2024.048495 - 25 April 2024

    Abstract The existing algorithms for solving multi-objective optimization problems fall into three main categories: Decomposition-based, dominance-based, and indicator-based. Traditional multi-objective optimization problems mainly focus on objectives, treating decision variables as a total variable to solve the problem without considering the critical role of decision variables in objective optimization. As seen, a variety of decision variable grouping algorithms have been proposed. However, these algorithms are relatively broad for the changes of most decision variables in the evolution process and are time-consuming in the process of finding the Pareto frontier. To solve these problems, a multi-objective optimization algorithm… More >

  • Open Access

    ARTICLE

    Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm

    El-Sayed M. El-kenawy1,2, Abdelaziz A. Abdelhamid3,4, Abdelhameed Ibrahim5, Seyedali Mirjalili6,7, Nima Khodadad8, Mona A. Al duailij9, Amel Ali Alhussan9,*, Doaa Sami Khafaga9

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1917-1934, 2023, DOI:10.32604/csse.2023.032497 - 03 November 2022

    Abstract Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields. Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention, such as particle swarm optimization (PSO), whale optimization algorithm (WOA), grey wolf optimization algorithm (GWO), genetic algorithm (GA), and gravitational search algorithm (GSA). According to the literature, no one metaheuristic optimization algorithm can handle all present optimization problems. Hence novel optimization methodologies are still needed. The Al-Biruni earth radius (BER) search optimization algorithm is proposed in this paper. The More >

  • Open Access

    ARTICLE

    Improving Network Longevity in Wireless Sensor Networks Using an Evolutionary Optimization Approach

    V. Nivedhitha1,*, A. Gopi Saminathan2, P. Thirumurugan3

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 603-616, 2021, DOI:10.32604/iasc.2021.016780 - 20 April 2021

    Abstract Several protocols strive to improve network longevity but fail to ameliorate the uneven overhead imparted upon the sensor nodes that lead to temporal deaths. The proposed work uses a metaheuristic approach that promotes load balancing and energy-efficient data transmission using the fruit fly optimization algorithm (FFOA). The approach combines the LEACH protocol with differential evolution (DE) to select an optimum cluster head in every cluster. The algorithm is designed to provide energy-efficient data transmissions based on the smell and vision foraging behavior of fruit flies. The approach considers the compactness of nodes, energy capacity, and More >

  • Open Access

    ARTICLE

    Feasibility-Guided Constraint-Handling Techniques for Engineering Optimization Problems

    Muhammad Asif Jan1,*, Yasir Mahmood1, Hidayat Ullah Khan2, Wali Khan Mashwani1, Muhammad Irfan Uddin3, Marwan Mahmoud4, Rashida Adeeb Khanum5, Ikramullah6, Noor Mast3

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2845-2862, 2021, DOI:10.32604/cmc.2021.015294 - 01 March 2021

    Abstract The particle swarm optimization (PSO) algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and fish. PSO is essentially an unconstrained algorithm and requires constraint handling techniques (CHTs) to solve constrained optimization problems (COPs). For this purpose, we integrate two CHTs, the superiority of feasibility (SF) and the violation constraint-handling (VCH), with a PSO. These CHTs distinguish feasible solutions from infeasible ones. Moreover, in SF, the selection of infeasible solutions is based on their degree of constraint violations, whereas in VCH, the number of constraint violations by an infeasible solution… More >

  • Open Access

    ARTICLE

    Improved Channel Allocation Scheme for Cognitive Radio Networks

    Shahzad Latif1, Suhail Akraam2, Arif Jamal Malik3, Aaqif Afzaal Abbasi3, Muhammad Habib3, Sangsoon Lim4,*

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 103-114, 2021, DOI:10.32604/iasc.2021.014388 - 07 January 2021

    Abstract

    In recent years, wireless channel optimization technologies witnessed tremendous improvements. In this regard, research for developing wireless spectrum for accommodating a wider range of wireless devices increased. This also helped in resolving spectrum scarcity issues. Cognitive Radio (CR) is a type of wireless communication in which a transceiver can intelligently detect which communication channels are being used. To avoid interference, it instantly moves traffic into vacant channels by avoiding the occupied ones. Cognitive Radio (CR) technology showed the potential to deal with the spectrum shortage problem. The spectrum assignment is often considered as a key research

    More >

  • Open Access

    ARTICLE

    Fused and Modified Evolutionary Optimization of Multiple Intelligent Systems Using ANN, SVM Approaches

    Jalal Sadoon Hameed Al-bayati1,*, Burak Berk Üstündağ2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1479-1496, 2021, DOI:10.32604/cmc.2020.013329 - 26 November 2020

    Abstract The Fused Modified Grasshopper Optimization Algorithm has been proposed, which selects the most specific feature sets from images of the disease of plant leaves. The Proposed algorithm ensures the detection of diseases during the early stages of the diagnosis of leaf disease by farmers and, finally, the crop needed to be controlled by farmers to ensure the survival and protection of plants. In this study, a novel approach has been suggested based on the standard optimization algorithm for grasshopper and the selection of features. Leaf conditions in plants are a major factor in reducing crop… More >

Displaying 1-10 on page 1 of 6. Per Page