Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

    Zhengqing Ding, Quan Yang, Xinyan Yan, Feng Gu, Xujuan Huang*, Zhaosheng Cai*

    Journal of Renewable Materials, Vol.12, No.1, pp. 103-117, 2024, DOI:10.32604/jrm.2023.029424 - 23 January 2024

    Abstract Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose (HEC) polymer surfactant (DA(EO)5GE-g-HEC) was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks. Dehydroabietyl polyethylene glycol glycidyl ether (DA(EO)5GE) was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether (Rosin derivative: DA(EO)5H) and epichlorohydrin. The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA. According to the formula, when m(HEC)/m(DA(EO)2GE) was 1:1~1:5, the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43% to 38.33%. The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied. The results showed that… More > Graphic Abstract

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

  • Open Access

    ARTICLE

    Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films

    Ruyu Yan1,2,3,4, Jian Fang1,*, Xiaohua Yang2,3,4,5,6, Na Yao2,3,4,5,6, Mei Li2,3,4,5,6, Yuan Nie2,3,4,5,6, Tianxiang Deng2,3,4,5,6, Haiyang Ding2,3,4,5,6, Lina Xu2,3,4,5,6, Shouhai Li2,3,4,5,6,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1937-1950, 2023, DOI:10.32604/jrm.2023.025126 - 01 December 2022

    Abstract Ethyl cellulose (EC), an important biomass-based material, has excellent film-forming properties. Nevertheless, the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC, which makes it too brittle to be used widely. The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer. In this study, an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC. Dimer-fatty-acid-based thioether polyol (DATP) was synthesized and used to modify ethyl cellulose films. The supramolecular composite films… More > Graphic Abstract

    Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films

  • Open Access

    ARTICLE

    Characterization of Carboxymethyl Cellulose Made from Bamboo Harvesting Residues

    Shuangyan Zhang*, Shun Yang, Chuangui Wang, Weiyi Su, Huangfei Lv, Yuanyuan Li

    Journal of Renewable Materials, Vol.10, No.12, pp. 3229-3241, 2022, DOI:10.32604/jrm.2022.020489 - 14 July 2022

    Abstract Bamboo harvesting residues are wastes by-products of bamboo industries that contain holocellulose for about 63.14% to 70.71%, which often be discarded, incinerated or buried. In this study, carboxymethyl cellulose was prepared from bamboo harvesting residues (bamboo-branch and bamboo-tip) as raw materials. The chemical composition of bamboo harvesting residues, the viscosity and degree of substitution of carboxymethyl cellulose were determined. Carboxymethyl cellulose obtained was further characterized and compared by means of FTIR, SEM, XRD and TG. Results showed that under the optimized identical conditions, the viscosity and degree of substitution of carboxymethyl cellulose from bamboo-branch and More > Graphic Abstract

    Characterization of Carboxymethyl Cellulose Made from Bamboo Harvesting Residues

  • Open Access

    ARTICLE

    Synthesis and characterization of polymeric responsive CMC/Pectin hydrogel films loaded with Tamarix aphylla extract as potential wound dressings

    BARKAT ALI KHAN1, FAZAL KARIM1, MUHAMMAD KHALID KHAN1,*, FAHEEM HAIDER1, SADIQULLAH KHAN2

    BIOCELL, Vol.45, No.5, pp. 1273-1285, 2021, DOI:10.32604/biocell.2021.015323 - 12 July 2021

    Abstract The fourth most predominant overwhelming type of trauma is burn injuries worldwide. Ideal wound healing dressings help in the wound healing process in a lower time with less pain. Commonly used dry wound dressing, like absorbent gauze or absorbent cotton, possess limited therapeutic effects and require repeated use, which further exaggerates patients’ suffering. In contrast, hydrogels films present a promising alternative to improve healing by guaranteeing a moisture balance at the wound site. The aim of the current study was to synthesize Tamarix aphylla (T. aphylla) extract-loaded hydrogel film with Na-CMC and pectin and to study their… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Potassium Monopersulfate/Ethyl Cellulose Microcapsules and Their Sustained Release Performance

    Qiaoguang Li1, Xuming Yan1, Jialong Chen1, Xugang Shu1,*, Puyou Jia2,*, Xiangjun Liang3

    Journal of Renewable Materials, Vol.9, No.10, pp. 1673-1684, 2021, DOI:10.32604/jrm.2021.014695 - 12 May 2021

    Abstract Environmental cleaning is an important aspect of bacteria control. Ethyl cellulose microcapsules containing potassium monopersulfate (PMCM) were prepared by emulsified solvent diffusion method. The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy (FT-IR), optical microscopy, scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy. The SEM micrographs of the PMCM containing 21.6% of C, 46.8% of O, 10.7% of S and 19.4% of K was relatively smooth. Thermal stability, sustained release performance, and antimicrobial activity of PMCM were investigated. The results showed that the drug loading More >

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles Using Plectranthus Amboinicus Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

    Nguyen Thi Thanh Thuy1,*, Le Hoang Huy1, Truong Thuy Vy1, Nguyen Thi Thanh Tam2, Bien Thi Lan Thanh1, Nguyen Thi My Lan3

    Journal of Renewable Materials, Vol.9, No.8, pp. 1393-1411, 2021, DOI:10.32604/jrm.2021.015772 - 08 April 2021

    Abstract In the present study, the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus (PA), which acted as both reducing and stabilizing agents. The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) biocomposite. The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscope (SEM), and X–ray diffraction (XRD). The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44. The surface plasmon… More > Graphic Abstract

    Green Synthesis of Silver Nanoparticles Using <i>Plectranthus Amboinicus</i> Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

  • Open Access

    ARTICLE

    Synthesis of Poly(acrylic acid)-Grafted Carboxymethyl Cellulose for Efficient Removal of Copper Ions

    Ying Lin1, Yihua Cao1, Qingping Song1, Jiangang Gao1, Puyou Jia2,*, Hamed Alsulami3, Marwan Amin Kutbi3

    Journal of Renewable Materials, Vol.7, No.12, pp. 1403-1414, 2019, DOI:10.32604/jrm.2019.08380

    Abstract Biocompatible and high content grafted carboxymethyl cellulose-gpoly(acrylic acid) powder was successfully synthesized in an aqueous system, and used as adsorbents for the removal of Cu(II) in aqueous solution. The copolymer was characterized by FT-IR and SEM techniques. Graft copolymerization introduced a large number of carboxyl groups in the polymer and caused the micro-surface of the material to be porous. The fundamental adsorption behaviors of the material were studied. The adsorption kinetics was well fitted with pseudo-second order equation, while the adsorption isotherm preferred to be described the Langmuir equation. The maximum adsorption capacity obtained from More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial Nanocomposite Hydrogels

    Sawsan Dacrory1*, Hussein Abou-Yousef1, Ragab E. Abou-Zeid1, Samir Kamel1, Mohamed S. Abdel-Aziz2, Mohamed Elbadry3

    Journal of Renewable Materials, Vol.6, No.5, pp. 536-547, 2018, DOI:10.7569/JRM.2017.634190

    Abstract Carboxymethyl cellulose hydrogels were developed through crosslinking process using eco-friendly crosslinkers such as maleic, succinic, and citric acids. Carboxymethyl cellulose was prepared from the cellulosic fraction of olive industry residues. A series of hydrogels with varying crosslinker acid concentrations, reaction times, and reaction temperatures was produced to study the swelling capacities and gel fraction of the obtained hydrogels. Additional study pertains to the preparation of antimicrobial nanocomposite hydrogels through in-situ incorporation of the silver nanoparticles during the crosslinking reaction. Silver nanoparticles were prepared by reduction of AgNO3with leaves of Ricinus communis. The particle size of More >

Displaying 1-10 on page 1 of 8. Per Page