Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Knockdown of SLC34A2 Inhibits Hepatocellular Carcinoma Cell Proliferation and Invasion

    Yanhua Li*1, Xia Chen†1, Hong Lu*

    Oncology Research, Vol.24, No.6, pp. 511-519, 2016, DOI:10.3727/096504016X14719078133483

    Abstract The gene solute carrier family 34 (sodium phosphate), member 2 (SLC34A2), is a member of the SLC34 family. Increasing evidence suggests that SLC34A2 is involved in the development of many human carcinomas. However, its role in hepatocellular carcinoma (HCC) is still unclear. Therefore, in this study we investigated the role of SLC34A2 in HCC and explored the underlying mechanism. We found that the expression of SLC34A2 is upregulated in HCC cell lines. Knockdown of SLC34A2 obviously inhibited HCC cell proliferation, migration/invasion, and the epithelial–mesenchymal transition (EMT) phenotype. Furthermore, knockdown of SLC34A2 significantly inhibited the expression More >

  • Open Access

    ARTICLE

    Knockdown of Long Noncoding RNA uc.338 by siRNA Inhibits Cellular Migration and Invasion in Human Lung Cancer Cells

    Xuexin Gao*, Xuezhen Gao, Chao Li*, Yukun Zhang*, Lei Gao

    Oncology Research, Vol.24, No.5, pp. 337-343, 2016, DOI:10.3727/096504016X14666990347671

    Abstract Lung cancer remains a critical health concern worldwide. Long noncoding RNAs with ultraconserved elements have recently been implicated in human tumorigenesis. The present study investigated the role of ultraconserved element 338 (uc.338) in the regulation of cell proliferation and metastasis in human lung cancer. Our data showed that the expression of uc.338 in lung cancer was remarkably increased in vivo and in vitro. Depletion of uc.338 with specific siRNA interference retarded the cell proliferative rate in lung cancer cell lines NCI-H929 and H1688. Furthermore, knockdown of uc.338 caused cell cycle arrest in the G0/G1 phase in More >

  • Open Access

    ARTICLE

    Knockdown of REV7 Inhibits Breast Cancer Cell Migration and Invasion

    Liu Feng*†, Wang Wei*, Zhang Heng, Han Yantao, Wang Chunbo

    Oncology Research, Vol.24, No.5, pp. 315-325, 2016, DOI:10.3727/096504016X14666990347590

    Abstract REV7 (also known as MAD2L2) is a multifunctional protein involved in DNA damage tolerance, cell cycle regulation, gene expression, and carcinogenesis. Although its expression is reportedly associated with poor prognosis in several kinds of human cancers, the significance of REV7 expression in breast malignancies is unclear. In this study, REV7 was found to be increased in breast cancer. We found that knockdown of REV7 inhibited the migration, invasion, and epithelial–mesenchymal transition (EMT) of breast cancer cells. Meanwhile, overexpression of REV7 promoted the migration, invasion, and EMT of breast cancer cells. As shown by Western blot, More >

  • Open Access

    ARTICLE

    TIPE2 Overexpression Suppresses the Proliferation, Migration, and Invasion in Prostate Cancer Cells by Inhibiting PI3K/Akt Signaling Pathway

    Qiang Lu, Zhe Liu, Zhuo Li, Jia Chen, Zhi Liao, Wan-rui Wu, Yuan-wei Li

    Oncology Research, Vol.24, No.5, pp. 305-313, 2016, DOI:10.3727/096504016X14666990347437

    Abstract Tumor necrosis factor-a (TNF-a)-induced protein 8-like 2 (TNFAIP8L2, TIPE2) is involved in the invasion and metastasis of human tumors. However, the functional role of TIPE2 in prostate cancer remains unclear. In the present study, we explored the role of TIPE2 in prostate cancer and cancer progression including the molecular mechanism that drives TIPE2-mediated oncogenesis. Our results showed that TIPE2 was lowly expressed in human prostate cancer tissues and cell lines. In addition, restored TIPE2 obviously inhibits proliferation in prostate cancer cells. TIPE2 overexpression also suppresses the epithelial–mesenchymal transition (EMT) process and migration/invasion in prostate cancer More >

  • Open Access

    ARTICLE

    Knockdown of PFTK1 Expression by RNAi Inhibits the Proliferation and Invasion of Human Non-Small Lung Adenocarcinoma Cells

    Mei-han Liu*, Shao-min Shi, Kai Li, En-qi Chen*

    Oncology Research, Vol.24, No.3, pp. 181-187, 2016, DOI:10.3727/096504016X14635761799038

    Abstract PFTK1 (PFTAIRE protein kinase 1), also named CDK14 (cyclin-dependent kinase 14), is a member of the cell division cycle 2 (CDC2)-related protein kinase family. It is highly expressed in several malignant tumors. However, the role of PFTK1 in the progression of non-small cell lung cancer (NSCLC) is still elusive. In this study, we aimed to explore the expression and function of PFTK1 in NSCLC cells. Our results showed that PFTK1 was significantly upregulated in human NSCLC cell lines. Silencing the expression of PFTK1 inhibited the proliferation of NSCLC cells. In addition, silencing the expression of More >

  • Open Access

    ARTICLE

    Inhibition of ERK1/2 Signaling Impairs the Promoting Effects of TGF-β1 on Hepatocellular Carcinoma Cell Invasion and Epithelial–Mesenchymal Transition

    Ling Liu, Nianfeng Li, Qi Zhang, Jixiang Zhou, Ling Lin, Xinxin He

    Oncology Research, Vol.25, No.9, pp. 1607-1616, 2017, DOI:10.3727/096504017X14938093512742

    Abstract Transforming growth factor-b (TGF-β) and ERK signaling have been implicated in various human cancers including hepatocellular carcinoma, but the underlying mechanism remains largely unclear. In this study, we aimed to explore the role of ERK1/2 in the regulation of TGF-β’s promoting and suppressive activities in HCC cells. Our data showed that treatment with TGF-β1 enhanced invasion and epithelial–mesenchymal transition (EMT) in HCC HepG2 cells, accompanied with increased MMP9 production and activation of Smad2/3 and ERK1/2, but inhibited tumor cell proliferation. These effects were eliminated by treatment with SB431542, a TGF-β inhibitor. Afterward, treatment with the… More >

  • Open Access

    ARTICLE

    TRAF4 Regulates Migration, Invasion, and Epithelial–Mesenchymal Transition via PI3K/AKT Signaling in Hepatocellular Carcinoma

    Kairui Liu*, Xiaolin Wu*, Xian Zang, Zejian Huang*, Zeyu Lin, Wenliang Tan*, Xiang Wu*, Wenrou Hu*, Baoqi Li*, Lei Zhang*

    Oncology Research, Vol.25, No.8, pp. 1329-1340, 2017, DOI:10.3727/096504017X14876227286564

    Abstract Overexpression of the tumor necrosis factor receptor-associated factor 4 (TRAF4) has been detected in many cancer types and is considered to foster tumor progression. However, the role of TRAF4 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that TRAF4 was highly expressed in HCC cell lines and HCC tissues compared with normal liver cell lines and adjacent noncancerous tissues. TRAF4 overexpression in HCC tissues was correlated with tumor quantity and vascular invasion. In vitro studies showed that TRAF4 was associated with HCC cell migration and invasion. An in vivo study verified that More >

  • Open Access

    ARTICLE

    Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process

    Paweena Dana*†‡, Ryusho Kariya, KulthidaVaeteewoottacharn*†, Kanlayanee Sawanyawisuth*†, Wunchana Seubwai†§, Kouki Matsuda, Seiji Okada, Sopit Wongkham*†

    Oncology Research, Vol.25, No.7, pp. 1047-1059, 2017, DOI:10.3727/096504016X14813899000565

    Abstract CD147 is a transmembrane protein that can induce the expression and activity of matrix metalloproteinases (MMPs). Expression of CD147 has been shown to potentiate cell migration, invasion, and metastasis of cancer. In this study, the critical role of CD147 in metastasis was elucidated using CD147-overexpressing cholangiocarcinoma (CCA) cells in vitro and in vivo. The molecular mechanism, demonstrated herein, supported the hypothesis that metastasis increased in CD147-overexpressing cells. Five CD147-overexpressing clones (Ex-CD147) were established from a low CD147-expressing CCA cell line, KKU-055, using lentivirus containing pReceiver-Lenti-CD147. The metastatic capability was determined using the tail vein injection… More >

  • Open Access

    ARTICLE

    Knockdown of Long Noncoding RNA CCAT2 Inhibits Cellular Proliferation, Invasion, and Epithelial–Mesenchymal Transition in Glioma Cells

    Jing Zeng*1, Tianping Du†1, Yafeng Song, Yan Gao, Fuyan Li, Ruimin Wu, Yijia Chen, Wei Li, Hong Zhou, Yi Yang, Zhijun Pei

    Oncology Research, Vol.25, No.6, pp. 913-921, 2017, DOI:10.3727/096504016X14792098307036

    Abstract Long noncoding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) has been demonstrated to play an important role in diverse tumorigenesis. However, the biological function of lncRNAs in glioma is still unknown. In this study, we found that lncRNA CCAT2 was overexpressed in glioma tissues and cell lines and associated with tumor grade and size. Furthermore, patients with high levels of lncRNA CCAT2 had poorer survival than those with lower levels of lncRNA CCAT2. Knocking down lncRNA CCAT2 expression significantly suppressed the glioma cell growth, migration, and invasion, as well as induced early apoptosis of glioma More >

  • Open Access

    ARTICLE

    Silencing of A-Kinase Anchor Protein 4 (AKAP4) Inhibits Proliferation and Progression of Thyroid Cancer

    Jiakai Han1, Wei Gao1, Dongyue Su, Yang Liu

    Oncology Research, Vol.25, No.6, pp. 873-878, 2017, DOI:10.3727/096504016X14783701102564

    Abstract A-kinase anchor protein 4 (AKAP4), a member of the A-kinase anchor family of proteins, plays a role in tumor development and progression. However, its expression pattern and function in human thyroid cancer remain obscure. Here we examined AKAP4 expression in thyroid cancer cell lines as well as the effects of AKAP4 on the proliferation and metastasis of thyroid cancer cells. We also explored the molecular mechanism by which AKAP4 mediates the metastatic potential of thyroid cancer cells. Our results revealed that the transcript and protein levels of AKAP4 were significantly upregulated in thyroid cancer cell… More >

Displaying 1-10 on page 1 of 60. Per Page