Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Energy Management System with Power Offering Strategy for a Microgrid Integrated VPP

    Yeonwoo Lee*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2313-2329, 2023, DOI:10.32604/cmc.2023.031133

    Abstract In the context of both the Virtual Power Plant (VPP) and microgrid (MG), the Energy Management System (EMS) is a key decision-maker for integrating Distributed renewable Energy Resources (DERs) efficiently. The EMS is regarded as a strong enabler of providing the optimized scheduling control in operation and management of usage of disperse DERs and Renewable Energy reSources (RES) such as a small-size wind-turbine (WT) and photovoltaic (PV) energies. The main objective to be pursued by the EMS is the minimization of the overall operating cost of the MG integrated VPP network. However, the minimization of the power peaks is a… More >

  • Open Access

    ARTICLE

    Development of Energy Management System for Micro Grid Operation

    S. Jayaprakash1,*, B. Gopi2, Murugananth Gopal Raj3, S. Sujith4, S. Deepa5, S. Swapna6

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2537-2551, 2023, DOI:10.32604/csse.2023.032038

    Abstract The introduction of several small and large-scale industries, malls, shopping complexes, and domestic applications has significantly increased energy consumption. The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings. The proposed micro-grid model includes four power generators: solar power, wind power, Electricity Board (EB) source, and a Diesel Generator (DG) set, with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources. The core issue in direct current to alternate current conversion is harmonics distortion, a five-stage multilevel inverter is employed… More >

  • Open Access

    ARTICLE

    Determination of Effectiveness of Energy Management System in Buildings

    Vivash Karki1, Roseline Mostafa2, Bhaskaran Gopalakrishnan2,*, Derek R. Johnson3

    Energy Engineering, Vol.120, No.2, pp. 561-586, 2023, DOI:10.32604/ee.2023.025218

    Abstract Building Energy Management Systems (BEMS) are computer-based systems that aid in managing, controlling, and monitoring the building technical services and energy consumption by equipment used in the building. The effectiveness of BEMS is dependent upon numerous factors, among which the operational characteristics of the building and the BEMS control parameters also play an essential role. This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS. The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help… More > Graphic Abstract

    Determination of Effectiveness of Energy Management System in Buildings

  • Open Access

    ARTICLE

    Energy Management and Capacity Optimization of Photovoltaic, Energy Storage System, Flexible Building Power System Considering Combined Benefit

    Chang Liu1, Bo Luo1, Wei Wang1, Hongyuan Gao1, Zhixun Wang2, Hongfa Ding3,*, Mengqi Yu4, Yongquan Peng5

    Energy Engineering, Vol.120, No.2, pp. 541-559, 2023, DOI:10.32604/ee.2022.022610

    Abstract Building structures themselves are one of the key areas of urban energy consumption, therefore, are a major source of greenhouse gas emissions. With this understood, the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions. Hence, to balance the interests of the environment and the building users, this paper proposes an optimal operation scheme for the photovoltaic, energy storage system, and flexible building power system (PEFB), considering the combined benefit of building. Based on the model of conventional photovoltaic (PV) and energy storage system (ESS), the mathematical optimization model of the system is proposed… More >

  • Open Access

    ARTICLE

    Modeling Energy Consumption in the Production Processes of Industrial Units Based on Load Response Programs in the Energy Market

    Baodong Li*

    Energy Engineering, Vol.120, No.2, pp. 461-481, 2023, DOI:10.32604/ee.2022.021877

    Abstract The optimal operation of microgrids is of great significance for the sake of efficient and economical management of its energy resources. The microgrid energy management system should plan to operate the microgrid while simultaneously considering the electric and thermal load. The present study proposes energy management to minimize the costs of operating an industrial microgrid. In fact, planning for energy supply is among the critical issues that distribution companies deal with daily in the competitive environment. A distribution company usually meets customer (end customer) demands by purchasing energy from a wholesale market. Given the load curtailment, distribution companies have more… More >

  • Open Access

    ARTICLE

    Energy Management of Networked Smart Railway Stations Considering Regenerative Braking, Energy Storage System, and Photovoltaic Units

    Saeed Akbari1, Seyed Saeed Fazel1,*, Hamed Hashemi-Dezaki2,3

    Energy Engineering, Vol.120, No.1, pp. 69-86, 2023, DOI:10.32604/ee.2022.024121

    Abstract The networking of microgrids has received significant attention in the form of a smart grid. In this paper, a set of smart railway stations, which is assumed as microgrids, is connected together. It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid. Also, the operational costs of stations under various conditions decrease by applying the proposed method. The smart railway stations are studied in the presence of photovoltaic (PV) units, energy storage systems (ESSs), and regenerative braking strategies. Studying regenerative braking is one of the essential contributions. Moreover, the… More > Graphic Abstract

    Energy Management of Networked Smart Railway Stations Considering Regenerative Braking, Energy Storage System, and Photovoltaic Units

  • Open Access

    ARTICLE

    Low Carbon Building Design Optimization Based on Intelligent Energy Management System

    Zhenyi Feng*, Nina Mo, Shujuan Dai, Yu Xiao, Xia Cheng

    Energy Engineering, Vol.120, No.1, pp. 201-219, 2023, DOI:10.32604/ee.2022.023471

    Abstract The construction of relevant standards for building carbon emission assessment in China has just started, and the quantitative analysis method and evaluation system are still imperfect, which hinders the development of lowcarbon building design. Therefore, the use of intelligent energy management system is very necessary. The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems. Based on the proposed quantitative method of building carbon emission, this paper establishes the quota theoretical system of building carbon emission analysis, and develops the quota based carbon emission calculation software. Smart energy management system… More >

  • Open Access

    ARTICLE

    Optimal Energy Consumption Optimization in a Smart House by Considering Electric Vehicles and Demand Response via a Hybrid Gravitational Search and Particle Swarm Optimization Algorithm

    Rongxin Zhang1,*, Chengying Yang2,3, Xuetao Li1

    Energy Engineering, Vol.119, No.6, pp. 2489-2511, 2022, DOI:10.32604/ee.2022.021517

    Abstract Buildings are the main energy consumers across the world, especially in urban communities. Building smartization, or the smartification of housing, therefore, is a major step towards energy grid smartization too. By controlling the energy consumption of lighting, heating, and cooling systems, energy consumption can be optimized. All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources (RES), which mitigates environmental impacts and reduces peak demand for electrical energy. In this paper, a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand… More >

  • Open Access

    ARTICLE

    Modeling the Proposal of the Simultaneous Purchases and Sales of Electricity and Gas for the Energy Market in a Microgrid Using the Harmony Search Algorithm

    Zinan Zhou, Yirun Chen, Wensheng Dai*

    Energy Engineering, Vol.119, No.6, pp. 2681-2709, 2022, DOI: 10.32604/ee.2022.021410

    Abstract The use of different energy carriers together, known as an energy hub, has been a hot topic of research in recent years amongst scientists and researchers. The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer, which has gained momentum in the form of microgrids (MGs). This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day. In a smart distribution network (DN), MGs can reduce their own costs in the previous-day market by bidding on sales and purchases. The sales and purchases… More >

  • Open Access

    ARTICLE

    Novel Approach to Energy Management via Performance Shaping Factors in Power Plants

    Ahmed Ali Ajmi1,2, Noor Shakir Mahmood1,2, Khairur Rijal Jamaludin1,*, Hayati Habibah Abdul Talib1, Shamsul Sarip1, Hazilah Mad Kaidi1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5025-5039, 2022, DOI:10.32604/cmc.2022.031239

    Abstract The literature that a lack of integration between the performance shaping factors (PSFs) and the energy management performance (EMP) is one of the critical problems that prevent performance improvement and reduces the power plant’s efficiency. To solve this problem, this article aims to achieve two main objectives: (1) Systematically investigate and identify the critical success factors (CSFs) for integration with PSFs and EMP; (2) Develop a novel modelling approach to predict the performance of power plants based on innovative integrated strategies. The research methodology is grounded on the theoretical and practical approach to improving performance. The Newcastle Ottawa Scale (NOS)… More >

Displaying 11-20 on page 2 of 43. Per Page