Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Semisupervised Encrypted Traffic Identification Based on Auxiliary Classification Generative Adversarial Network

    Jiaming Mao1,*, Mingming Zhang1, Mu Chen2, Lu Chen2, Fei Xia1, Lei Fan1, ZiXuan Wang3, Wenbing Zhao4

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 373-390, 2021, DOI:10.32604/csse.2021.018086 - 12 August 2021

    Abstract The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased network traffic markedly. Over the past few decades, network traffic identification has been a research hotspot in the field of network management and security monitoring. However, as more network services use encryption technology, network traffic identification faces many challenges. Although classic machine learning methods can solve many problems that cannot be solved by port- and payload-based methods, manually extract features that are frequently updated is time-consuming and labor-intensive. Deep learning has good automatic feature learning… More >

Displaying 1-10 on page 1 of 1. Per Page