Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Spatial Distribution Feature Extraction Network for Open Set Recognition of Electromagnetic Signal

    Hui Zhang1, Huaji Zhou2,*, Li Wang1, Feng Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 279-296, 2024, DOI:10.32604/cmes.2023.031497 - 30 December 2023

    Abstract This paper proposes a novel open set recognition method, the Spatial Distribution Feature Extraction Network (SDFEN), to address the problem of electromagnetic signal recognition in an open environment. The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors. The designed hybrid loss function considers both intra-class distance and inter-class distance, thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training. Consequently, this method allows unknown… More >

Displaying 1-10 on page 1 of 1. Per Page