Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18,980)
  • Open Access

    ARTICLE

    Spatial Assessment of Wastewater Requirements for the New Capital City of Indonesia

    Walter Timo de Vries*, Veronica Cristina Astudillo Avila, Achmad Ghozali

    Revue Internationale de Géomatique, Vol.34, pp. 125-149, 2025, DOI:10.32604/rig.2025.057970 - 11 March 2025

    Abstract The development of Indonesia’s New Capital City (Ibu Kota Negara (IKN)) does not only offer opportunities but also faces uncertainties. One of these concerns is wastewater management, in terms of volume, location, and treatment facilities. To evaluate how the city might be able to manage this, this study starts with a theoretical evaluation of which wastewater management principles are crucial. Then the empirical study evaluates where and how the current infrastructure of the IKN could manage the wastewater and assesses—based on spatial scenarios—if the current wastewater management plans for the IKN are adequate. A Geographic… More >

  • Open Access

    ARTICLE

    Quantitative Assessment of Generative Large Language Models on Design Pattern Application

    Dae-Kyoo Kim*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3843-3872, 2025, DOI:10.32604/cmc.2025.062552 - 06 March 2025

    Abstract Design patterns offer reusable solutions for common software issues, enhancing quality. The advent of generative large language models (LLMs) marks progress in software development, but their efficacy in applying design patterns is not fully assessed. The recent introduction of generative large language models (LLMs) like ChatGPT and CoPilot has demonstrated significant promise in software development. They assist with a variety of tasks including code generation, modeling, bug fixing, and testing, leading to enhanced efficiency and productivity. Although initial uses of these LLMs have had a positive effect on software development, their potential influence on the… More >

  • Open Access

    ARTICLE

    Enhancing Malware Detection Resilience: A U-Net GAN Denoising Framework for Image-Based Classification

    Huiyao Dong1, Igor Kotenko2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4263-4285, 2025, DOI:10.32604/cmc.2025.062439 - 06 March 2025

    Abstract The growing complexity of cyber threats requires innovative machine learning techniques, and image-based malware classification opens up new possibilities. Meanwhile, existing research has largely overlooked the impact of noise and obfuscation techniques commonly employed by malware authors to evade detection, and there is a critical gap in using noise simulation as a means of replicating real-world malware obfuscation techniques and adopting denoising framework to counteract these challenges. This study introduces an image denoising technique based on a U-Net combined with a GAN framework to address noise interference and obfuscation challenges in image-based malware analysis. The… More >

  • Open Access

    ARTICLE

    Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials

    Denis S. Ryabov1, Igor V. Kosarev2,3, Daxing Xiong4, Aleksey A. Kudreyko5, Sergey V. Dmitriev2,6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3797-3820, 2025, DOI:10.32604/cmc.2025.062079 - 06 March 2025

    Abstract Molecular dynamics (MD) is a powerful method widely used in materials science and solid-state physics. The accuracy of MD simulations depends on the quality of the interatomic potentials. In this work, a special class of exact solutions to the equations of motion of atoms in a body-centered cubic (bcc) lattice is analyzed. These solutions take the form of delocalized nonlinear vibrational modes (DNVMs) and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals. The accuracy of the potentials can be checked by comparing the… More >

  • Open Access

    REVIEW

    Ensemble Deep Learning Approaches in Health Care: A Review

    Aziz Alotaibi*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3741-3771, 2025, DOI:10.32604/cmc.2025.061998 - 06 March 2025

    Abstract Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data. Recently, both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions. With the growth in popularity of deep learning and ensemble learning algorithms, they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data. Ensemble deep learning has exhibited significant performance in enhancing learning generalization through… More >

  • Open Access

    REVIEW

    Artificial Intelligence Revolutionising the Automotive Sector: A Comprehensive Review of Current Insights, Challenges, and Future Scope

    Md Naeem Hossain1, Md. Abdur Rahim2, Md Mustafizur Rahman1,3,*, Devarajan Ramasamy1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3643-3692, 2025, DOI:10.32604/cmc.2025.061749 - 06 March 2025

    Abstract The automotive sector is crucial in modern society, facilitating essential transportation needs across personal, commercial, and logistical domains while significantly contributing to national economic development and employment generation. The transformative impact of Artificial Intelligence (AI) has revolutionised multiple facets of the automotive industry, encompassing intelligent manufacturing processes, diagnostic systems, control mechanisms, supply chain operations, customer service platforms, and traffic management solutions. While extensive research exists on the above aspects of AI applications in automotive contexts, there is a compelling need to synthesise this knowledge comprehensively to guide and inspire future research. This review introduces a… More >

  • Open Access

    ARTICLE

    Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network

    Zhen-Yu Chen1, Feng-Chi Liu2, Xin Wang3, Cheng-Hsiung Lee1, Ching-Sheng Lin1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4287-4300, 2025, DOI:10.32604/cmc.2025.061661 - 06 March 2025

    Abstract In the domain of knowledge graph embedding, conventional approaches typically transform entities and relations into continuous vector spaces. However, parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations. In particular, resource-intensive embeddings often lead to increased computational costs, and may limit scalability and adaptability in practical environments, such as in low-resource settings or real-world applications. This paper explores an approach to knowledge graph representation learning that leverages small, reserved entities and relation sets for parameter-efficient embedding. We introduce a hierarchical attention network designed to refine More >

  • Open Access

    ARTICLE

    Harmonization of Heart Disease Dataset for Accurate Diagnosis: A Machine Learning Approach Enhanced by Feature Engineering

    Ruhul Amin1, Md. Jamil Khan1, Tonway Deb Nath1, Md. Shamim Reza2, Jungpil Shin3,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3907-3919, 2025, DOI:10.32604/cmc.2025.061645 - 06 March 2025

    Abstract Heart disease includes a multiplicity of medical conditions that affect the structure, blood vessels, and general operation of the heart. Numerous researchers have made progress in correcting and predicting early heart disease, but more remains to be accomplished. The diagnostic accuracy of many current studies is inadequate due to the attempt to predict patients with heart disease using traditional approaches. By using data fusion from several regions of the country, we intend to increase the accuracy of heart disease prediction. A statistical approach that promotes insights triggered by feature interactions to reveal the intricate pattern… More >

  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    YOLO-SIFD: YOLO with Sliced Inference and Fractal Dimension Analysis for Improved Fire and Smoke Detection

    Mariam Ishtiaq1,2, Jong-Un Won1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5343-5361, 2025, DOI:10.32604/cmc.2025.061466 - 06 March 2025

    Abstract Fire detection has held stringent importance in computer vision for over half a century. The development of early fire detection strategies is pivotal to the realization of safe and smart cities, inhabitable in the future. However, the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets, lack of diversity, and class imbalance. In this work, we explore the possible ways forward to overcome these challenges posed by available datasets. We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art (SOTA) vision-based models and proposeMore >

Displaying 1-10 on page 1 of 18980. Per Page