Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (636)
  • Open Access

    REVIEW

    A Systematic Literature Review on Blockchain Consensus Mechanisms’ Security: Applications and Open Challenges

    Muhammad Muntasir Yakubu1,2,*, Mohd Fadzil B Hassan1,3, Kamaluddeen Usman Danyaro1, Aisha Zahid Junejo4, Muhammed Siraj5, Saidu Yahaya1, Shamsuddeen Adamu1, Kamal Abdulsalam6

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1437-1481, 2024, DOI:10.32604/csse.2024.054556 - 22 November 2024

    Abstract This study conducts a systematic literature review (SLR) of blockchain consensus mechanisms, an essential protocols that maintain the integrity, reliability, and decentralization of distributed ledger networks. The aim is to comprehensively investigate prominent mechanisms’ security features and vulnerabilities, emphasizing their security considerations, applications, challenges, and future directions. The existing literature offers valuable insights into various consensus mechanisms’ strengths, limitations, and security vulnerabilities and their real-world applications. However, there remains a gap in synthesizing and analyzing this knowledge systematically. Addressing this gap would facilitate a structured approach to understanding consensus mechanisms’ security and vulnerabilities comprehensively. The… More >

  • Open Access

    ARTICLE

    Intelligent PID Control Method for Quadrotor UAV with Serial Humanoid Intelligence

    Linlin Zhang, Lvzhao Bai, Jianshu Liang, Zhiying Qin*, Yuejing Zhao

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1557-1579, 2024, DOI:10.32604/csse.2024.054237 - 22 November 2024

    Abstract Quadrotor unmanned aerial vehicles (UAVs) are widely used in inspection, agriculture, express delivery, and other fields owing to their low cost and high flexibility. However, the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent. To address the control problem of a four-rotor UAV, we propose a method to enhance the controller’s accuracy by considering underactuated dynamics, nonlinearities, and external disturbances. A mathematical model is constructed based on the flight principles of the quadrotor UAV. We develop a control algorithm that combines humanoid intelligence with… More >

  • Open Access

    REVIEW

    A Systematic Review of Automated Classification for Simple and Complex Query SQL on NoSQL Database

    Nurhadi, Rabiah Abdul Kadir*, Ely Salwana Mat Surin, Mahidur R. Sarker*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1405-1435, 2024, DOI:10.32604/csse.2024.051851 - 22 November 2024

    Abstract A data lake (DL), abbreviated as DL, denotes a vast reservoir or repository of data. It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured, structured, and unstructured information. These systems use a flat architecture and run different types of data analytics. NoSQL databases are nontabular and store data in a different manner than the relational table. NoSQL databases come in various forms, including key-value pairs, documents, wide columns, and graphs, each based on its data model. They offer simpler scalability and generally outperform… More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    PCB CT Image Element Segmentation Model Optimizing the Semantic Perception of Connectivity Relationship

    Chen Chen, Kai Qiao, Jie Yang, Jian Chen, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2629-2642, 2024, DOI:10.32604/cmc.2024.056038 - 18 November 2024

    Abstract Computed Tomography (CT) is a commonly used technology in Printed Circuit Boards (PCB) non-destructive testing, and element segmentation of CT images is a key subsequent step. With the development of deep learning, researchers began to exploit the “pre-training and fine-tuning” training process for multi-element segmentation, reducing the time spent on manual annotation. However, the existing element segmentation model only focuses on the overall accuracy at the pixel level, ignoring whether the element connectivity relationship can be correctly identified. To this end, this paper proposes a PCB CT image element segmentation model optimizing the semantic perception… More >

  • Open Access

    ARTICLE

    A comprehensive and systematic analysis of Dihydrolipoamide S-acetyltransferase (DLAT) as a novel prognostic biomarker in pan-cancer and glioma

    HUI ZHOU#, ZHENGYU YU#, JING XU, ZHONGWANG WANG, YALI TAO, JINJIN WANG, PEIPEI YANG, JINRONG YANG*, TING NIU*

    Oncology Research, Vol.32, No.12, pp. 1903-1919, 2024, DOI:10.32604/or.2024.048138 - 13 November 2024

    Abstract Background: Dihydrolipoamide S-acetyltransferase (DLAT) is a subunit of the pyruvate dehydrogenase complex (PDC), a rate-limiting enzyme complex, that can participate in either glycolysis or the tricarboxylic acid cycle (TCA). However, the pathogenesis is not fully understood. We aimed to perform a more systematic and comprehensive analysis of DLAT in the occurrence and progression of tumors, and to investigate its function in patients’ prognosis and immunotherapy. Methods: The differential expression, diagnosis, prognosis, genetic and epigenetic alterations, tumor microenvironment, stemness, immune infiltration cells, function enrichment, single-cell analysis, and drug response across cancers were conducted based on multiple computational… More > Graphic Abstract

    A comprehensive and systematic analysis of Dihydrolipoamide S-acetyltransferase <i>(DLAT)</i> as a novel prognostic biomarker in pan-cancer and glioma

  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method

    Jingfa Ma, Hu Liu*, Lingxiao Chen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 443-469, 2024, DOI:10.32604/cmc.2024.056209 - 15 October 2024

    Abstract Demand-responsive transportation (DRT) is a flexible passenger service designed to enhance road efficiency, reduce peak-hour traffic, and boost passenger satisfaction. However, existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs. Consequently, there is a need to develop real-time DRT route optimization methods that integrate both initial and real-time requests. This paper presents a two-stage, multi-objective optimization model for DRT vehicle scheduling. The first stage involves an initial scheduling model aimed at minimizing vehicle configuration, and operational, and CO2 emission costs while ensuring passenger satisfaction. The second stage develops a real-time scheduling… More >

  • Open Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024

    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

Displaying 1-10 on page 1 of 636. Per Page