Weiguang Zheng1,2,3, Junzhu Zhang1,2, Shanchao Wang2,*, Gaoshan Feng2, Xiaohong Xu2, Qiuxiang Ma2
CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 489-508, 2023, DOI:10.32604/cmes.2023.025169
- 23 April 2023
Abstract The extended Kalman filter (EKF) algorithm and acceleration sensor measurements were used to identify vehicle mass and road gradient in the work. Four different states of fixed mass, variable mass, fixed slope and variable slope were set to simulate real-time working conditions, respectively. A comprehensive electric commercial vehicle shifting strategy was formulated according to the identification results. The co-simulation results showed that, compared with the recursive least square (RLS) algorithm, the proposed algorithm could identify the real-time vehicle mass and road gradient quickly and accurately. The comprehensive shifting strategy formulated had the following advantages, e.g., More >
Graphic Abstract