Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Hemodynamic Response Detection Using Integrated EEG-fNIRS-VPA for BCI

    Arshia Arif1, M. Jawad Khan1,2,*, Kashif Javed1, Hasan Sajid1,2, Saddaf Rubab1, Noman Naseer3, Talha Irfan Khan4

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 535-555, 2022, DOI:10.32604/cmc.2022.018318 - 07 September 2021

    Abstract For BCI systems, it is important to have an accurate and less complex architecture to control a device with enhanced accuracy. In this paper, a novel methodology for more accurate detection of the hemodynamic response has been developed using a multimodal brain-computer interface (BCI). An integrated classifier has been developed for achieving better classification accuracy using two modalities. An integrated EEG-fNIRS-based vector-phase analysis (VPA) has been conducted. An open-source dataset collected at the Technische Universität Berlin, including simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals of 26 healthy participants during n-back tests, has been… More >

Displaying 1-10 on page 1 of 1. Per Page