Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Deep Learning Model for EEG-Based Lie Detection Test Using Spatial and Temporal Aspects

    Abeer Abdulaziz AlArfaj, Hanan Ahmed Hosni Mahmoud*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5655-5669, 2022, DOI:10.32604/cmc.2022.031135 - 28 July 2022

    Abstract Lie detection test is highly significant task due to its impact on criminology and society. Computerized lie detection test model using electroencephalogram (EEG) signals is studied in literature. In this paper we studied deep learning framework in lie detection test paradigm. First, we apply a preprocessing technique to utilize only a small fragment of the EEG image instead of the whole image. Our model describes a temporal feature map of the EEG signals measured during the lie detection test. A deep learning attention model (V-TAM) extracts the temporal map vector during the learning process. This… More >

Displaying 1-10 on page 1 of 1. Per Page