Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    EEG Scalogram Analysis in Emotion Recognition: A Swin Transformer and TCN-Based Approach

    Selime Tuba Pesen, Mehmet Ali Altuncu*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5597-5611, 2025, DOI:10.32604/cmc.2025.066702 - 30 July 2025

    Abstract EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses. However, the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging. Therefore, advanced deep learning methods are needed to extract meaningful features and improve classification performance. This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network (TCN) mechanisms for EEG-based emotion recognition. EEG signals are first converted into scalogram images using Continuous Wavelet Transform (CWT), and classification is performed on these images. Swin Transformer is… More >

  • Open Access

    ARTICLE

    A Neural ODE-Enhanced Deep Learning Framework for Accurate and Real-Time Epilepsy Detection

    Tawfeeq Shawly1,2, Ahmed A. Alsheikhy3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3033-3064, 2025, DOI:10.32604/cmes.2025.065264 - 30 June 2025

    Abstract Epilepsy is a long-term neurological condition marked by recurrent seizures, which result from abnormal electrical activity in the brain that disrupts its normal functioning. Traditional methods for detecting epilepsy through machine learning typically utilize discrete-time models, which inadequately represent the continuous dynamics of electroencephalogram (EEG) signals. To overcome this limitation, we introduce an innovative approach that employs Neural Ordinary Differential Equations (NODEs) to model EEG signals as continuous-time systems. This allows for effective management of irregular sampling and intricate temporal patterns. In contrast to conventional techniques, such as Convolutional Neural Networks (CNNs) and Recurrent Neural… More >

  • Open Access

    ARTICLE

    GACL-Net: Hybrid Deep Learning Framework for Accurate Motor Imagery Classification in Stroke Rehabilitation

    Chayut Bunterngchit1, Laith H. Baniata2, Mohammad H. Baniata3, Ashraf ALDabbas4, Mohannad A. Khair5, Thanaphon Chearanai6, Sangwoo Kang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 517-536, 2025, DOI:10.32604/cmc.2025.060368 - 26 March 2025

    Abstract Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts. Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability. To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM) network (GACL-Net), a novel hybrid deep learning model… More >

  • Open Access

    ARTICLE

    A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification

    Umapathi Krishnamoorthy1,*, Shanmugam Jagan2, Mohammed Zakariah3, Abdulaziz S. Almazyad4,*, K. Gurunathan5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3903-3926, 2024, DOI:10.32604/cmc.2024.055910 - 19 December 2024

    Abstract Brain signal analysis from electroencephalogram (EEG) recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure. Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings. In the current seizure detection and classification landscape, most models primarily focus on binary classification—distinguishing between seizure and non-seizure states. While effective for basic detection, these models fail to address the nuanced stages of seizures and the intervals between them. Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure… More >

  • Open Access

    CORRECTION

    Correction: Human Stress Recognition by Correlating Vision and EEG Data

    S. Praveenkumar*, T. Karthick

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1073-1073, 2024, DOI:10.32604/csse.2024.054414 - 17 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528 - 20 June 2024

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

  • Open Access

    ARTICLE

    Research on Driver’s Fatigue Detection Based on Information Fusion

    Meiyan Zhang1, Boqi Zhao1, Jipu Li2, Qisong Wang1,*, Dan Liu1, Jinwei Sun1, Jingxiao Liao1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1039-1061, 2024, DOI:10.32604/cmc.2024.048643 - 25 April 2024

    Abstract Driving fatigue is a physiological phenomenon that often occurs during driving. After the driver enters a fatigued state, the attention is lax, the response is slow, and the ability to deal with emergencies is significantly reduced, which can easily cause traffic accidents. Therefore, studying driver fatigue detection methods is significant in ensuring safe driving. However, the fatigue state of actual drivers is easily interfered with by the external environment (glasses and light), which leads to many problems, such as weak reliability of fatigue driving detection. Moreover, fatigue is a slow process, first manifested in physiological… More >

  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970 - 29 November 2023

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual… More >

  • Open Access

    ARTICLE

    An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost

    Fei Wang1,2, Li Li1, Yinxing Wan1, Zhuorong Li1, Lixian Luo3, Bangshun Hu1, Jiahui Pan1,2, Zhenfu Wen4, Haiyun Huang1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2301-2316, 2023, DOI:10.32604/cmc.2023.037727 - 30 August 2023

    Abstract Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation… More >

  • Open Access

    ARTICLE

    Multi-View & Transfer Learning for Epilepsy Recognition Based on EEG Signals

    Jiali Wang1, Bing Li2, Chengyu Qiu1, Xinyun Zhang1, Yuting Cheng1, Peihua Wang1, Ta Zhou3, Hong Ge2, Yuanpeng Zhang1,3,*, Jing Cai3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4843-4866, 2023, DOI:10.32604/cmc.2023.037457 - 29 April 2023

    Abstract Epilepsy is a central nervous system disorder in which brain activity becomes abnormal. Electroencephalogram (EEG) signals, as recordings of brain activity, have been widely used for epilepsy recognition. To study epileptic EEG signals and develop artificial intelligence (AI)-assist recognition, a multi-view transfer learning (MVTL-LSR) algorithm based on least squares regression is proposed in this study. Compared with most existing multi-view transfer learning algorithms, MVTL-LSR has two merits: (1) Since traditional transfer learning algorithms leverage knowledge from different sources, which poses a significant risk to data privacy. Therefore, we develop a knowledge transfer mechanism that can More >

Displaying 1-10 on page 1 of 47. Per Page