Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18,093)
  • Open Access

    RETRACTION

    Retraction: MicroRNA-148a Acts as a Tumor Suppressor in Osteosarcoma via Targeting Rho-Associated Coiled-Coil Kinase

    Oncology Research Editorial Office

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.077270 - 30 December 2025

    Abstract This article has no abstract. More >

  • Open Access

    RETRACTION

    Retraction: Truncated Bid Overexpression Induced by Recombinant Adenovirus Cre/LoxP System Suppresses the Tumorigenic Potential of CD133+ Ovarian Cancer Stem Cells

    Oncology Research Editorial Office

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.077268 - 30 December 2025

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    RP11-Derived Long Non-Coding RNAs in Hepatocellular Carcinoma: Hidden Treasures in Plain Sight

    Se Ha Jang1,2,#, Hyung Seok Kim3,#, Jung Woo Eun1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.072240 - 30 December 2025

    Abstract Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal malignancies worldwide. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of gene expression and cancer progression, yet the functional diversity of RP11-derived lncRNAs—originally mapped to bacterial artificial chromosome (BAC) clones from the Roswell Park Cancer Institute—has only recently begun to be appreciated. This mini-review aims to systematically synthesize current findings on RP11-derived lncRNAs in HCC, outlining their genomic origins, molecular mechanisms, and biological significance. We highlight their roles in metabolic reprogramming, microRNA network modulation, and tumor progression, as well as their diagnostic and More >

  • Open Access

    REVIEW

    Circulating Tumor DNA in Cervical Cancer: Clinical Utility and Medico-Legal Perspectives

    Abdulrahman K. Sinno1, Aisha Mustapha1, Navya Nair1, Simona Zaami2, Lina De Paola2, Valentina Billone3, Eleonora Conti3, Giuseppe Gullo3,*, Pasquale Patrizio4

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.072176 - 30 December 2025

    Abstract Cervical cancer related to human papillomavirus (HPV) is a leading cause of cancer-related mortality among women worldwide. Cancer cells release fragments of their DNA, known as circulating tumor DNA (ctDNA), which can be detected in bodily fluids. A PubMed search using the terms “ctHPV” or “circulating tumor DNA” and “cervical cancer”, limited to the past ten years, identified 104 articles, complemented by hand-searching for literature addressing medico-legal implications. Studies were evaluated for relevance and methodological quality. Detection and characterization of circulating tumor HPV DNA (ctHPV DNA) have emerged as promising tools for assessing prognosis and More >

  • Open Access

    REVIEW

    Branched-Chain Amino Acid Metabolic Reprogramming and Cancer: Molecular Mechanisms, Immune Regulation, and Precision Targeting

    Dongchi Cai1,2,#, Jialin Ji3,#, Chunhui Yang1,*, Hong Cai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.071152 - 30 December 2025

    Abstract Metabolic reprogramming involving branched-chain amino acids (BCAAs)—leucine, isoleucine, and valine—is increasingly recognized as pivotal in cancer progression, metastasis, and immune modulation. This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation, survival, and therapy resistance. Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1 (LAT1) and enzymes including branched chain amino acid transaminase 1(BCAT1), branched chain amino acid transaminase 2 (BCAT2), branched-chain alpha-keto acid dehydrogenase (BCKDH), and branched chain alpha-keto acid dehydrogenase kinase (BCKDK). These alterations sustain energy production, biosynthesis, redox homeostasis, and oncogenic… More >

  • Open Access

    ARTICLE

    AGPAT3 Regulates Immune Microenvironment in Osteosarcoma via Lysophosphatidic Acid Metabolism

    Shenghui Su, Yu Zeng, Jiaxin Chen, Xieping Dong*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070558 - 30 December 2025

    Abstract Background: Recent studies have shown glycerolipid metabolism played an essential role in multiple tumors, however, its function in osteosarcoma is unclear. This study aimed to explore the role of glycerolipid metabolism in osteosarcoma. Methods: We conducted bioinformatics analysis using data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and single-cell RNA sequencing. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to identify the Glycerolipid metabolism-related genes associated with the clinical outcome of osteosarcoma. Tumor-associated macrophages (TAMs) and their interactions with immune cells were examined through single-cell analysis and co-culture experiments.… More >

  • Open Access

    REVIEW

    The Role of Exosomes as a Key Factor of Cytostatic Resistance in Cancer: Mechanisms of Action, Potential Biomarkers, and Possible Exosome-Based Therapies

    Sandra Kałużna1,*, Monika Świerczewska1,2, Sylwia Ciesiółka1, Małgorzata Partyka1, Michał Nowicki1, Karolina Wojtowicz1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070356 - 30 December 2025

    Abstract The last research focuses on the role of exosomes in cancer treatment. Exosomes are extracellular vesicles. They can be secreted by cancer cells, and they can modulate chemotherapy sensitivity. Determining exosomal content opens the possibility for guiding treatment strategies for cancer diseases. Exosomal microRNA are considered one of the prime candidates for exosomal biomarkers. Exosomal circular RNAs represent excellent biomarkers for liquid biopsy because of their stability in many types of cancer. Exosomal proteins remain reliable biomarkers also. Exosomes have emerged as promising therapeutic candidates. Their biological properties render them ideal vectors for drug delivery.… More >

  • Open Access

    ARTICLE

    ETV4-Mediated PD-L1 Upregulation Promotes Immune Evasion and Predicts Poor Immunotherapy Response in Melanoma

    Tao Zhu1, Taofeng Wei1, Mingdong Yang1, Junjun Xu1, Huifang Jiang1, Wei He1, Juyan Zheng2,*, Haibin Dai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070180 - 30 December 2025

    Abstract Background: Aberrant expression of transcription factors (TFs) is a key mechanism mediating tumor immune escape and therapeutic resistance. The involvement of E26 transformation-specific (ETS) family of TFs in immune regulation is not fully understood. The study aimed to elucidate the function of E-twenty-six variant 4 (ETV4) in tumor immune evasion and its potential as a predictive biomarker for immunotherapy in melanoma. Methods: The expression patterns of ETS family TFs were analyzed in melanoma and hepatocellular carcinoma (HCC). Single-cell RNA sequencing (scRNA-seq) was used to dissect the cellular expression and function of ETV4 in the tumor… More >

  • Open Access

    ARTICLE

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

    Kai Gui1,#, Tianyi Yang1,#, Chengying Xiong1, Yue Wang1, Zhiqiang He1, Wuxian Li2,3,*, Min Tang1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070143 - 30 December 2025

    Abstract Objectives: The mechanism by which specific tumor subsets in colorectal cancer (CRC) use alternative metabolic pathways, particularly those modulated by hypoxia and fructose, to alter the tumor microenvironment (TME) remains unclear. This study aimed to identify these malignant subpopulations and characterize their intercellular signaling networks and spatial organization through an integrative multi-omics approach. Methods: Leveraging bulk datasets, single-cell RNA sequencing, and integrative spatial transcriptomics, we developed a prognostic model based on hypoxia-and fructose metabolism-related genes (HFGs) to delineate tumor cell subpopulations and their intercellular signaling networks. Results: We identified a specific subset of stanniocalcin-2 positive (STC2+)… More > Graphic Abstract

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

  • Open Access

    ARTICLE

    Development of Patient-Derived Conditionally Reprogrammed 3D Breast Cancer Culture Models for Drug Sensitivity Evaluation

    Jing Cai1,#, Haoyun Zhu1,#, Weiling Guo1, Ting Huang1, Pangzhou Chen1,2, Wen Zhou1, Ziyun Guan1,3,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069902 - 30 December 2025

    Abstract Background: Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity. Current preclinical models, however, are inadequate for predicting individual patient responses towards different drugs. This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations. Methods: Tumor and adjacent tissues from female breast cancer patients were collected during surgery. Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models. The obtained patient-derived conditional reprogramming breast cancer (CRBC) cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres… More >

Displaying 1-10 on page 1 of 18093. Per Page