Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Research on ECMS Based on Segmented Path Braking Energy Recovery in a Fuel Cell Vehicle

    Wen Sun1, Meijing Li2, Guoxiang Li1, Ke Sun1,*, Shuzhan Bai1,*

    Energy Engineering, Vol.121, No.1, pp. 95-110, 2024, DOI:10.32604/ee.2023.042096 - 27 December 2023

    Abstract Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles. Since fuel cells cannot recover energy and have a slow dynamic response, they need to be used with different power sources. Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research. This paper proposes an adaptive equivalent fuel minimum consumption strategy (AECMS) to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors (EF) in traditional ECMS. In this method, the kinematics More >

  • Open Access

    ARTICLE

    TECMH: Transformer-Based Cross-Modal Hashing For Fine-Grained Image-Text Retrieval

    Qiqi Li1, Longfei Ma1, Zheng Jiang1, Mingyong Li1,*, Bo Jin2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3713-3728, 2023, DOI:10.32604/cmc.2023.037463 - 31 March 2023

    Abstract In recent years, cross-modal hash retrieval has become a popular research field because of its advantages of high efficiency and low storage. Cross-modal retrieval technology can be applied to search engines, cross-modal medical processing, etc. The existing main method is to use a multi-label matching paradigm to finish the retrieval tasks. However, such methods do not use fine-grained information in the multi-modal data, which may lead to sub-optimal results. To avoid cross-modal matching turning into label matching, this paper proposes an end-to-end fine-grained cross-modal hash retrieval method, which can focus more on the fine-grained semantic… More >

  • Open Access

    REVIEW

    Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration

    AAYUSHI RANDHAWA1,2, SAYAN DEB DUTTA1, KEYA GANGULY1, TEJAL V. PATIL1,2, RACHMI LUTHFIKASARI1, KI-TAEK LIM1,2,*

    BIOCELL, Vol.47, No.4, pp. 789-808, 2023, DOI:10.32604/biocell.2023.026217 - 08 March 2023

    Abstract Tissues are made up of cells and the extracellular matrix (ECM) which surrounds them. These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life. This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM. Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells, including growth, proliferation, and differentiation. However, the matrix’s characteristic features also impact the More >

  • Open Access

    ARTICLE

    A Novel Method for the Application of the ECMS (Equivalent Consumption Minimization Strategy) to Reduce Hydrogen Consumption in Fuel Cell Hybrid Electric Vehicles

    Wen Sun, Hao Liu, Ming Han, Ke Sun, Shuzhan Bai*, Guoxiang Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 867-882, 2022, DOI:10.32604/fdmp.2022.018923 - 06 April 2022

    Abstract Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society. In this context, this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor (determined in the framework of the equivalent consumption minimum strategy-ECMS) on the working conditions. The simulation results show that under typical conditions (some representative cities being considered), the proposed strategy can maintain the power balance; for different initial battery’s states of charge (SOC), after the SOC stabilizes, the fuel consumption More >

  • Open Access

    VIEWPOINT

    Applications of scaffolds: Tools for enhancing the immunomodulation of mesenchymal stromal cells

    OK-HYEON KIM1,2,#, EUN RAN KIM3,#, JUN HYUNG PARK2, HYUN JUNG LEE1,2,*

    BIOCELL, Vol.46, No.6, pp. 1439-1443, 2022, DOI:10.32604/biocell.2022.018921 - 07 February 2022

    Abstract Exogenously delivered mesenchymal stromal cells (MSCs) are therapeutically beneficial owing to their paracrine effect; they secrete various cytokines, nucleic acids, and proteins. Multiple bioengineering techniques can help MSC cultures to release secretomes by providing stem cell niche-like conditions (both structurally and functionally). Various scaffolds mimic the natural extracellular matrix (ECM) using both natural and synthetic polymers, providing favorable environments for MSC proliferation and differentiation. Depending on material properties, either topographically or elastically structured scaffolds can be fabricated. Three-dimensional scaffolds have tunable substrate rigidities and structures, aiding MSC cultivation. Decellularized ECM-derived hydrogels are similar to the More >

  • Open Access

    REVIEW

    Use of Impella cardiac axial flow pump for cardiogenic shock (A newer alternative)–How good is the evidence?

    RAFIQ AHMED BHAT1, SYED MANZOOR ALI2, YOOSUF ALI ASHRAF MUHAMMAD HUSSENBOCUS3, AKANKSHA RATHI4, JAVAID AKHTER BHAT5, ABDUL ALEEM KHAN6, SYED MAQBOOL2, RAJA SAQIB IQBAL7, MD MONOWARUL ISLAM8, YONGSHENG QU9, YOU ZHANG9, YUXIAO SUN1, WENTAO XIAO9, ABHISHEK TIBREWAL10, CHUANYU GAO1,*

    BIOCELL, Vol.46, No.5, pp. 1139-1150, 2022, DOI:10.32604/biocell.2022.016833 - 06 January 2022

    Abstract The adverse outcomes of a ventricular heart failure (left, right or biventricular) caused by cardiogenic shock are aggravated by lung oedema and organ mal perfusion. Despite advances in medical sciences, revascularisation and mechanical hemodynamic support have proved ineffective in reducing the mortality rate in such patients. A thorough study of the data available about cardio-vascular diseases reveals that the application of conventional methods of treatment are least helpful to practically restore normal functions of heart when it experiences end-stage systolic ventricular failure. Thus, to overcome the challenges and find alternatives to address this issue, percutaneous… More >

  • Open Access

    VIEWPOINT

    Stem cells in intervertebral disc regeneration–more talk than action?

    PETRA KRAUS1,*, ANKITA SAMANTA1, SINA LUFKIN2, THOMAS LUFKIN1

    BIOCELL, Vol.46, No.4, pp. 893-898, 2022, DOI:10.32604/biocell.2022.018432 - 15 December 2021

    Abstract Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of More >

  • Open Access

    ABSTRACT

    Extracellular Matrix Elasticity Gives Integrin a Sweet Change via a p53/miRNA-532/atp2c1 Axis

    Yan Zu1,2, Qiang Li1, Chun Yang2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 106-106, 2019, DOI:10.32604/mcb.2019.07132

    Abstract Extracellular matrix (ECM) elasticity affects the function of a variety of cells. Integrins are transmembrane receptors that considered to be a sensor of cellular mechanical stimulation. The activity of integrins is strongly influenced by glycans through glycosylation events and the establishment of glycan-mediated interactions. Our study found that the level of β1 integrin N-linked glycosylation was significantly down-regulated on softer ECM. Further, sialic acid is a common monosaccharide modified at the end of the sugar chain during N-glycosylation. We subjected the enriched sialylated glycoproteins to gel-based proteomic identification by tandem mass spectrometry and found that… More >

  • Open Access

    ABSTRACT

    LOX Alleviates Rat Intervertebral Disc Degeneration Through ECM Improvement and Anti-Apoptotic Protection in Nucleus Pulposus Cells

    Runze Zhao1, Tingting Xia1, Mengyue Wang1, Fan Feng1, Wanqian Liu1,*, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 77-77, 2019, DOI:10.32604/mcb.2019.07155

    Abstract This study was focus on the exploring the therapeutic function of lysyl oxidase (LOX) in rat nucleus pulposus (NP) cells in intervertebral disc degeneration (IVDD). To do this, a Sprague-Dawley (SD) rat caudal spine degeneration model was established by puncturing the Co5-6 disc. NP cells apoptosis and extracellular matrix (ECM) degeneration in IVDD were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), Hematoxylin-Eosin (H&E) and immunofluorescence. Then, the therapeutic effect of LOX on IVDD was evaluated by histological staining. In vitro, the regulator effect of LOX on degenerate rat NP cell was explored. ECM… More >

  • Open Access

    ABSTRACT

    Quantifying Heterogeneity of Cell-ECM Interactions Through Integrated Biophysical Analyses

    William Leineweber1, Stephanie I. Fraley1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 9-9, 2019, DOI:10.32604/mcb.2019.08504

    Abstract Cell-extracellular matrix (ECM) interactions are critical modulators of repair and regeneration. However, variability within individual cells of the same cell type and within the ECM microenvironment can lead to heterogeneous outcomes that may limit the reliable application of cell-biomaterial constructs in regenerative medicine. Understanding the origins of heterogeneity is critical to overcoming this challenge and requires measurement of cell-ECM interactions at the single cell level. There are four core biophysical modules that cells employ to interact with their surrounding ECM: protrusion, adhesion, contractility, and matrix remodeling. Conventional approaches measure these interactions in separate experiments on… More >

Displaying 1-10 on page 1 of 13. Per Page