Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images

    Fuad A. M. Al-Yarimi*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 129-142, 2023, DOI:10.32604/csse.2023.024297 - 01 June 2022

    Abstract A critical component of dealing with heart disease is real-time identification, which triggers rapid action. The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias. Recent contributions to cardiac arrhythmia prediction using supervised learning approaches generally involve the use of demographic features (electronic health records), signal features (electrocardiogram features as signals), and temporal features. Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats, it is possible to detect some of the irregularities in the early stages of arrhythmia. More >

Displaying 1-10 on page 1 of 1. Per Page