Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    E-AAPIV: Merkle Tree-Based Real-Time Android Manifest Integrity Verification for Mobile Payment Security

    Mostafa Mohamed Ahmed Mohamed Alsaedy1,*, Atef Zaki Ghalwash1, Aliaa Abd Elhalim Yousif2, Safaa Magdy Azzam1

    Journal of Cyber Security, Vol.7, pp. 653-674, 2025, DOI:10.32604/jcs.2025.073547 - 24 December 2025

    Abstract Mobile financial applications and payment systems face significant security challenges from reverse engineering attacks. Attackers can decompile Android Package Kit (APK) files, modify permissions, and repackage applications with malicious capabilities. This work introduces E-AAPIV (Enhanced Android Apps Permissions Integrity Verifier), an advanced framework that uses Merkle Tree technology for real-time manifest integrity verification. The proposed system constructs cryptographic Merkle Tree from AndroidManifest.xml permission structures. It establishes secure client-server connections using Elliptic Curve Diffie-Hellman Protocol (ECDH-P384) key exchange. Root hashes are encrypted with Advanced Encryption Standard-256-Galois/Counter Mode (AES-256-GCM), integrated with hardware-backed Android Keystore for enhanced security. More >

  • Open Access

    ARTICLE

    A Coprocessor Architecture for 80/112-bit Security Related Applications

    Muhammad Rashid*, Majid Alotaibi

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6849-6865, 2023, DOI:10.32604/cmc.2023.032849 - 28 December 2022

    Abstract We have proposed a flexible coprocessor key-authentication architecture for 80/112-bit security-related applications over field by employing Elliptic-curve Diffie Hellman (ECDH) protocol. Towards flexibility, a serial input/output interface is used to load/produce secret, public, and shared keys sequentially. Moreover, to reduce the hardware resources and to achieve a reasonable time for cryptographic computations, we have proposed a finite field digit-serial multiplier architecture using combined shift and accumulate techniques. Furthermore, two finite-state-machine controllers are used to perform efficient control functionalities. The proposed coprocessor architecture over and is programmed using Verilog and then implemented on Xilinx Virtex-7 FPGA More >

Displaying 1-10 on page 1 of 2. Per Page