Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Microstructure Refinement for Superior Ductility of Al–Si Alloy by Electron Beam Melting Additive Manufacturing

    Huakang Bian1,3,*, Yufan Zhao2,3, Akihiko Chiba3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012491

    Abstract Refining the Si phase in Al‒Si alloy has been a research interest for decades. Previous studies suggested many Al- and Si-enriched nano-segments (approximately 100 nm) can coexist in a melted Al–Si liquid solution when they were reheated to a temperature between 1080 and 1290 °C. These nano-segments could be retained to become crystal nuclei and grew into fine grains under a very fast cooling rate. Thus, this provides a novel approach of refining the microstructure of Al–Si alloy using electron beam melting (EBM) technology because the temperature exceeds 1500 °C in the melting pool with… More >

  • Open Access

    PROCEEDINGS

    High-Rate Multiaxial Behaviour of Electron Beam Melted Ti-6Al-2Sn-4Zr-2Mo: An Experimental Study Using a Novel Tension-Torsion Hopkinson Bar Apparatus

    Yuan Xu1,*, Govind Gour2, Manuela Galati3, Abdollah Saboori3, Antonio Pellegrino4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013220

    Abstract The dynamic behaviour of Ti-6Al-2Sn-4Zr-2Mo additively manufactured by electron beam melting (EBM) is presented in this study considering synchronised tension-torsion loading. A bespoke spilt Hopkinson Tension-Torsion bar is used to generate combined tensile and torsional stress pulses that interact simultaneously with a novel specimen geometry. High-speed digital imaging correlation techniques are employed to assess the high-rate deformation and crack propagation of the specimen. The material's dynamic response was analysed across a spectrum of stress states, including uniaxial tension, shear, and combinations of tension and shear at strain rates ranging between 500 s-1 and 2000 s-1. Comparable More >

Displaying 1-10 on page 1 of 2. Per Page