Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with… More >

  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that More >

  • Open Access

    ARTICLE

    Thermal Loss Analysis of a Flat Plate Solar Collector Using Numerical Simulation

    Timur Merembayev1,2,*, Yedilkhan Amirgaliyev1,3, Murat Kunelbayev1, Didar Yedilkhan1,4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4627-4640, 2022, DOI:10.32604/cmc.2022.027180 - 28 July 2022

    Abstract In this paper, we studied theoretically and numerically heated losses of a flat solar collector to model the solar water heating system for the Kazakhstan climate condition. For different climatic zones with a growing cost for energy or lack of central heating systems, promising is to find ways to improve the energy efficiency of the solar system. The mathematical model (based on ordinary differential equation) simulated the solar system work process under different conditions. To bridge the modeling and real values results, we studied the important physical parameters such as loss coefficient, Nu, Ra, and… More >

  • Open Access

    ARTICLE

    Dynamic Simulation and Performance Analysis on Multi-Energy Coupled CCHP System

    Xueqin Tian1, Jinfei Sun2, Tong Xu1, Mengran Cui2, Xinlei Wang1, Jianxiang Guo2, De-gejirifu1,*, Na Wang1

    Energy Engineering, Vol.119, No.2, pp. 723-737, 2022, DOI:10.32604/ee.2022.015982 - 24 January 2022

    Abstract Although the Combined Cooing, Heating and Power System (hereinafter referred to as “CCHP”) improves the capacity utilization rate and energy utilization efficiency, single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads. On the basis of user convenience and wide applicability of clean air energy, this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat, analyze trends of such parameters as gas consumption and power consumption of heat pump… More >

  • Open Access

    ARTICLE

    In Silico Disulfide Bond Engineering to Improve Human LEPTIN Stability

    Bahram Barati1, Fatemeh Fazeli Zafar1, Shuanhu Hu1, Najmeh Fani2, Sajjad Eshtiaghi3, Shuang Wang1,*

    Journal of Renewable Materials, Vol.9, No.11, pp. 1843-1857, 2021, DOI:10.32604/jrm.2021.016301 - 04 June 2021

    Abstract Enhancing the stability of biomolecules is one of the hot topics in industry. In this study, we enhanced the stability of an important protein called LEPTIN. LEPTIN is a hormone secreted by fat cells playing an essential role in body weight and composition, and its deficiency can result in several disorders. The treatment of related LEPTIN dysfunctions is often available in the form of injection. To decrease the cost and the frequency of its applications can be achieved by increasing its lifetime through engineering LEPTIN. In this study, to engineer LEPTIN, we have introduced disulfide… More > Graphic Abstract

    <i>In Silico</i> Disulfide Bond Engineering to Improve Human LEPTIN Stability

  • Open Access

    ARTICLE

    Thermodynamic Simulation on the Change in Phase for Carburizing Process

    Anh Tuan Hoang1, Xuan Phuong Nguyen2, Osamah Ibrahim Khalaf3, Thi Xuan Tran4, Minh Quang Chau5, Thi Minh Hao Dong2, Duong Nam Nguyen6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1129-1145, 2021, DOI:10.32604/cmc.2021.015349 - 22 March 2021

    Abstract The type of technology used to strengthen the surface structure of machine parts, typically by carbon-permeation, has made a great contribution to the mechanical engineering industry because of its outstanding advantages in corrosion resistance and enhanced mechanical and physical properties. Furthermore, carbon permeation is considered as an optimal method of heat treatment through the diffusion of carbon atoms into the surface of alloy steel. This study presented research results on the thermodynamic calculation and simulation of the carbon permeability process. Applying Fick’s law, the paper calculated the distribution of carbon concentration in the alloy steel… More >

  • Open Access

    ARTICLE

    Dynamic Simulation of Cracked Buildings for Damage Detection

    Alan Alonso-Rivers1, Rolando Salgado-Estrada2,*

    Structural Durability & Health Monitoring, Vol.14, No.3, pp. 187-204, 2020, DOI:10.32604/sdhm.2020.010743 - 14 September 2020

    Abstract A dynamic simulation method for cracked structures is implemented to determine their dynamic response with the purpose of evaluating their structural behavior. The procedure makes possible the simulation of three-dimensional cracked structures. The excitation force is randomly generated to simulate wind gusts. It is assumed the structure remains in the elastic range, which allows for each mode that contributes to its dynamic response to be decoupled. The results indicate that the presence of damage causes changes in the modals parameters of the structure as accurate as other similar methods proposed for simpler structures. Therefore, it More >

  • Open Access

    ARTICLE

    Dynamic Simulation Analysis of the Working Device of a ZL50 Loader

    Guiju Zhang1,2, Caiyuan Xiao1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 699-707, 2020, DOI:10.32604/fdmp.2020.09481 - 11 August 2020

    Abstract In this study, assuming a certain type of wheel loader as the main objective of the research, the performances of the working device of the loader are investigated on the basis of an in-house code. After creating a three-dimensional model of the working device using Solidworks, this model has been imported into the dynamic simulation software ADAMS, and the simulation problem has been completed by adding the relevant constraints and loadings. The load stress curve relating to the main connecting point of the working device has been obtained in the frame work of this approach More >

  • Open Access

    ABSTRACT

    Comparison of Aortic Flow Patterns in Patients with and without Aortic Valve Disease: Hemodynamic Simulation Based on PC-MRI and CTA Data

    Lijian Xu1,2, Lekang Yin3, Fuyou Liang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 71-72, 2019, DOI:10.32604/mcb.2019.05741

    Abstract Recent studies have revealed that aortic valve diseases are associated with the increased incidence of the aortopathy development. However, the influence of aortic valve diseases on aortic hemodynamics remains unclear. The purpose of this study was therefore to investigate the hemodynamic differences in patients with and without aortic valve disease through patient-specific simulations performed on two aorta models (BAV with severe stenosis vs. normal tricuspid aortic valve (TAV)). Realistic geometries and boundary conditions were obtained from computed tomography angiography (CTA) and phase-contrast magnetic resonance imaging (PC-MRI) measurements, respectively. In addition, 4D-MRI were performed to validate More >

  • Open Access

    ARTICLE

    Development of a Modal Approach for the Fatigue Damage Evaluation of Mechanical Components Subjected to Random Loads

    F. Cianetti1

    Structural Durability & Health Monitoring, Vol.8, No.1, pp. 1-30, 2012, DOI:10.3970/sdhm.2012.008.001

    Abstract This research activity refers to the problem of fatigue damage evaluation of mechanical components subjected to random loads. In detail, the present paper describes a procedure, developed by the author, that, starting from component modal modelling, can very quickly gives an answer to the request not only of a qualitative evaluation of its stress state but also of a quantitative and very reliable estimation of the component damage. This estimation is available (both in time and in frequency domain), regardless of the stress state recovery, only by an appropriate elaboration of lagrangian coordinates and elements stress More >

Displaying 1-10 on page 1 of 20. Per Page