Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data

    SangSeok Lee1, HaeWon Moon1, Lee Sael1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 319-336, 2024, DOI:10.32604/cmes.2023.031150 - 30 December 2023

    Abstract How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data? Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors. For example, air quality tensor data consists of multiple sensory values gathered from wide locations for a long time. Such data, accumulated over time, is redundant and consumes a lot of memory in its raw form. We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand… More > Graphic Abstract

    Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data

Displaying 1-10 on page 1 of 1. Per Page