Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Analysis of Linear and Nonlinear Vibrations of Composite Rectangular Sandwich Plates with Lattice Cores

    Alireza Moradi, Alireza Shaterzadeh*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 223-257, 2025, DOI:10.32604/cmc.2024.059441 - 03 January 2025

    Abstract For the first time, the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work. The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it. For this purpose, the partial differential equations of motion have been derived based on the first-order shear deformation theory, employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations. Then, the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation… More >

  • Open Access

    ARTICLE

    Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 599-647, 2019, DOI:10.31614/cmes.2019.04472

    Abstract According to the wave power rule, the second derivative of a function x(t) with respect to the variable t is equal to negative n times the function x(t) raised to the power of 2n-1. Solving the ordinary differential equations numerically results in waves appearing in the figures. The ordinary differential equation is very simple; however, waves, including the regular amplitude and period, are drawn in the figure. In this study, the function for obtaining the wave is called the leaf function. Based on the leaf function, the exact solutions for the undamped and unforced Duffing equations… More >

  • Open Access

    ARTICLE

    Exact Solutions of the Cubic Duffing Equation by Leaf Functions under Free Vibration

    Kazunori Shinohara1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 149-215, 2018, DOI:10.3970/cmes.2018.02179

    Abstract Exact solutions of the cubic Duffing equation with the initial conditions are presented. These exact solutions are expressed in terms of leaf functions and trigonometric functions. The leaf function r=sleafn(t) or r=cleafn(t) satisfies the ordinary differential equation dx2/dt2=-nr2n-1. The second-order differential of the leaf function is equal to -n times the function raised to the (2n-1) power of the leaf function. By using the leaf functions, the exact solutions of the cubic Duffing equation can be derived under several conditions. These solutions are constructed using the integral functions of leaf functions sleaf2(t) and cleaf2(t) for More >

  • Open Access

    ARTICLE

    A Simple Collocation Scheme for Obtaining the Periodic Solutions of the Duffing Equation, and its Equivalence to the High Dimensional Harmonic Balance Method: Subharmonic Oscillations

    Hong-Hua Dai1,2, Matt Schnoor2, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.5, pp. 459-498, 2012, DOI:10.3970/cmes.2012.084.459

    Abstract In this study, the harmonic and 1/3 subharmonic oscillations of a single degree of freedom Duffing oscillator with large nonlinearity and large damping are investigated by using a simple point collocation method applied in the time domain over a period of the periodic solution. The relationship between the proposed collocation method and the high dimensional harmonic balance method (HDHB), proposed earlier by Thomas, Dowell, and Hall (2002), is explored. We demonstrate that the HDHB is not a kind of "harmonic balance method" but essentially a cumbersome version of the collocation method. In using the collocation method,… More >

  • Open Access

    ARTICLE

    A Further Study on Using x· = λ[αR + βP] (P = F − R(F·R) / ||R||2) and x· = λ[αF + βP] (P = R − F(F·R) / ||F||2) in Iteratively Solving the Nonlinear System of Algebraic Equations F(x) = 0

    Chein-Shan Liu1,2, Hong-Hua Dai1, Satya N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.2, pp. 195-228, 2011, DOI:10.3970/cmes.2011.081.195

    Abstract In this continuation of a series of our earlier papers, we define a hyper-surface h(x,t) = 0 in terms of the unknown vector x, and a monotonically increasing function Q(t) of a time-like variable t, to solve a system of nonlinear algebraic equations F(x) = 0. If R is a vector related to ∂h / ∂x, , we consider the evolution equation x· = λ[αR + βP], where P = F − R(F·R) / ||R||2 such that P·R = 0; or x· = λ[αF + βP], where P = R − F(F·R) / ||F||2 such that P*·F = 0. From these evolution More >

Displaying 1-10 on page 1 of 5. Per Page