Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Fatigue Crack Growth Reliability Analysis by Stochastic Boundary Element Method

    Xiyong Huang1, M. H. Aliabadi2, Z. Sharif Khodaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp. 291-330, 2014, DOI:10.3970/cmes.2014.102.291

    Abstract In this paper, a stochastic dual boundary element formulation is presented for probabilistic analysis of fatigue crack growth. The method involves a direct differentiation approach for calculating boundary and fracture response derivatives with respect to random parameters. Total derivatives method is used to obtain the derivatives of fatigue parameters with respect to random parameters. First- Order Reliability Method (FORM) is applied to evaluate the most probable point (MPP). Opening mode fatigue crack growth problems are used as benchmarks to demonstrate the performance of the proposed method. More >

  • Open Access

    ARTICLE

    Crack Growth Modeling for Mixed-mode Problems

    A.P.Cisilino1, M.H. Aliabadi2

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 213-238, 2010, DOI:10.3970/sdhm.2010.006.213

    Abstract This paper presents a review of the dual boundary element method for modeling crack growth in two-dimensional and three-dimensional mixed mode problems. The modeling strategy for crack coalescence using the DBEM is presented and comparisons are made with alternative solutions where available. Also presented are three-dimensional multiple crack growth and microcrack growth problems. More >

Displaying 1-10 on page 1 of 2. Per Page