Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    PROCEEDINGS

    Phase Diagram of Impacting Nanodroplets on Mesh Surfaces

    Qiang Ma1,2,3, Tuan Tran2,*, Xiaodong Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011051

    Abstract Controlling dynamics of impacting droplets on meshes is significantly important, which attracted a lot of attention because of its great potential applications in liquid separation, self-cleaning, and water harvesting [1-3], yet the underlying physical mechanisms are not entirely revealed. Here, the impact dynamics of a nanodroplet on mesh surfaces with different wettability are studied through molecular dynamics (MD) simulations. Due to scale effects between the nano and macroscale, the impacting nanodroplets exhibit some unique dynamic characteristics [4-7]. On a superhydrophobic mesh surface, when varying the impact conditions of nanodroplets, different outcomes can occur: (i) at… More >

  • Open Access

    PROCEEDINGS

    Dynamic Behaviors after Droplet Impact onto Liquid Surface

    Kazuhiko Kakuda1,*, Asuka Iizumi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-5, 2022, DOI:10.32604/icces.2022.08695

    Abstract In this paper, we present the dynamic behaviors of crown formation, central jet, and secondary droplets generated with droplet impact onto a liquid surface by using experimental and computational approaches. In our experiment, the dynamic behaviors after a droplet impact are recorded using a high-speed camera with appropriate resolution and exposure time. On the other hand, we simulate numerically the similar behaviors using the VOF (volume of fluid) solver in the OpenFOAM. As a fluid field, we consider the multiphase flows with free surfaces based on incompressible Navier-Stokes equations in the software codes. Some qualitative More >

  • Open Access

    ARTICLE

    Taguching the Atmospheric Plasma Spraying Process: Influence of Processing Factors on Droplet Impact Properties Obtained on Dense ZrO2 and H2Ar75% Plasma Gas

    Ridha Djebali1, Mohsen Toujani2, Bernard Pateyron3

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 147-160, 2013, DOI:10.3970/cmc.2013.037.147

    Abstract In this paper a study of the atmospheric plasma spraying process was conducted. The Jets&Poudres code was used to solve the partial differential equations for the conservation of mass, momentum and energy involved in the problem together with the K-e turbulent model. The Taguchi technique was used to study the influence of processing factors on droplet impact properties obtained on dense zirconia (ZrO2) under H2Ar75% plasma gas that allow optimal functioning condition. The test of the operating parameters for the studied ranges showed that the "thermal power" factor plays a key role on the state of sprayed More >

  • Open Access

    ARTICLE

    Thermal Effects on the Spreading and Solidification of a Micrometric Molten Particle Impacting onto a Rigid Substrate

    S. Oukach1,2,3, H. Hamdi2, M. El Ganaoui4, B. Pateyron1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 173-196, 2012, DOI:10.3970/fdmp.2012.008.173

    Abstract The splat formation is one of the basic processes in thermal spray coatings. The performance of these coatings is strongly related to the process of spreading and solidification of molten droplets. The aim of the present paper is to simulate the fluid flow, heat transfer and phase-change that occur when a micrometric molten droplet impacts onto a rigid substrate and to examine the effect of the substrate conditions, such as initial temperature and material on the solidification time and spreading process. The effect of thermal contact resistance is also investigated. The simulation model used is More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF DROPLET IMPACT AND SOLIDIFICATION INCLUDING THERMAL SHRINKAGE IN A THERMAL SPRAY PROCESS

    Sina Alavi, Mohammad Passandideh-Fard*

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-9, 2011, DOI:10.5098/hmt.v2.2.3007

    Abstract In this paper, a numerical study is performed to investigate the effects of thermal shrinkage on the deposition of molten particles on a substrate in a thermal spray process using the Volume-of-Fluid (VOF) method. Thermal shrinkage is a phenomenon caused by the variation of density during cooling and solidification of a molten metal. The Navier-Stokes equations along with the energy equation including phase change are solved using a 2D/axisymmetric mesh. The VOF method is used to track the free surface of molten particles, and an enthalpy-porosity formulation is used to model solidification. For the normal More >

  • Open Access

    ARTICLE

    The Impact of Ink-Jet Droplets on a Paper-Like Structure

    M. Do-Quang1, A. Carlson1, G. Amberg1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 389-402, 2011, DOI:10.3970/fdmp.2011.007.389

    Abstract Inkjet technology has been recognized as one of the most successful and promising micro-system technologies. The wide application areas of printer heads and the increasing demand of high quality prints are making ink consumption and print see-through important topics in the inkjet technology. In the present study we investigate numerically the impact of ink droplets onto a porous material that mimics the paper structure. The mathematical framework is based on a free energy formulation, coupling the Cahn-Hilliard and Navier Stokes equations, for the modelling of the two-phase flow. The case studied here consists of a More >

  • Open Access

    ARTICLE

    A Computational Study of High-Speed Droplet Impact

    T. Sanada1, K. Ando2, T. Colonius2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 329-340, 2011, DOI:10.3970/fdmp.2011.007.329

    Abstract When a droplet impacts a solid surface at high speed, the contact periphery expands very quickly and liquid compressibility plays an important role in the initial dynamics and the formation of lateral jets. The high speed impact results in high pressures that can account for the surface erosion. In this study, we numerically investigated a high speed droplet impacts on a solid wall. The multicomponent Euler equations with the stiffened equation of state are computed using a FV-WENO scheme with an HLLC Riemann solver that accurately captures shocks and interfaces. In order to compare the More >

  • Open Access

    ARTICLE

    Liquid Droplet Impact onto Flat and Rigid Surfaces: Initial Ejection Velocity of the Lamella

    Davood Kalantari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 81-92, 2009, DOI:10.3970/fdmp.2009.005.081

    Abstract In this paper a theoretical approach is elaborated for modelling the impact and ensuing spreading behaviour of a liquid droplet after its collision with a flat and rigid surface. The major outcomes of such a study can be summarized as follows: 1) The propagating-shock-wave velocity associated with the droplet is not a constant value but depends on the impact velocity and the physical and geometrical properties of the droplet. 2) The initial radial ejection velocity of the lamella is proportional to the shock-wave velocity (ua) and the impact velocity (0) according to the expression (a-u0)1/2. More >

Displaying 1-10 on page 1 of 8. Per Page