Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Framework for Driver Drowsiness Monitoring Using a Convolutional Neural Network and the Internet of Things

    Muhamad Irsan1,2,*, Rosilah Hassan2, Anwar Hassan Ibrahim3, Mohamad Khatim Hasan2, Meng Chun Lam2, Wan Mohd Hirwani Wan Hussain4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 157-174, 2024, DOI:10.32604/iasc.2024.042193 - 21 May 2024

    Abstract One of the major causes of road accidents is sleepy drivers. Such accidents typically result in fatalities and financial losses and disadvantage other road users. Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system. Most studies have examined how the mouth and eyelids move. However, this limits the system’s ability to identify drowsiness traits. Therefore, this study designed an Accident Detection Framework (RPK) that could be used to reduce road accidents due to sleepiness and detect the location of accidents. The drowsiness detection model used three facial… More >

  • Open Access

    ARTICLE

    A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM

    Sara A. Alameen*, Areej M. Alhothali

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 895-912, 2023, DOI:10.32604/csse.2023.024643 - 01 June 2022

    Abstract Today, fatalities, physical injuries, and significant economic losses occur due to car accidents. Among the leading causes of car accidents is drowsiness behind the wheel, which can affect any driver. Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents. This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos. This model depends on integrating a 3D convolutional neural network (3D-CNN) and long short-term memory (LSTM). The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features… More >

  • Open Access

    ARTICLE

    CNN Based Driver Drowsiness Detection System Using Emotion Analysis

    H. Varun Chand*, J. Karthikeyan

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 717-728, 2022, DOI:10.32604/iasc.2022.020008 - 22 September 2021

    Abstract

    The drowsiness of the driver and rash driving are the major causes of road accidents, which result in loss of valuable life, and deteriorate the safety in the road traffic. Reliable and precise driver drowsiness systems are required to prevent road accidents and to improve road traffic safety. Various driver drowsiness detection systems have been designed with different technologies which have an affinity towards the unique parameter of detecting the drowsiness of the driver. This paper proposes a novel model of multi-level distribution of detecting the driver drowsiness using the Convolution Neural Networks (CNN) followed

    More >

Displaying 1-10 on page 1 of 3. Per Page