Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ABSTRACT

    Carbon Nanotube Transmission between Linear and Rotational Motions

    Hanqing Jiang1, Junqiang Lu2, Min-Feng Yu2, Yonggang Huang3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 133-144, 2008, DOI:10.3970/icces.2008.006.133

    Abstract The periodic lattice registry of multi-walled carbon nanotubes (MWCNTs) have been exploited for the possibilities of development of nanodevices. This paper studied the telescoping behaviors of double-walled carbon nanotubes (DWCNTs) by atomic-scale finite element and tight-bind Green function methods. It was found that telescoping a DWCNT (e.g., (6,3)/(12,6)) will induce a rotational motion of the inner CNT that has a chirl angle θ (0◦ < θ < 30◦). This telescoping-induced rotational motion does not exist for armchair and zigzag DWCNTs due to the symmetry of CNTs. The rotational angle is completely determined by the chirality More >

  • Open Access

    ARTICLE

    Carbon Nanotube Transmission between Linear and Rotational Motions

    Hanqing Jiang1, Junqiang Lu2, Min-Feng Yu2, Yonggang Huang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 95-102, 2008, DOI:10.3970/cmes.2008.024.095

    Abstract The periodic lattice registry of multi-walled carbon nanotubes (MWCNTs) have been exploited for the possibilities of development of nanodevices. This paper studied the telescoping behaviors of double-walled carbon nanotubes (DWCNTs) by atomic-scale finite element and tight-bind Green function methods. It was found that telescoping a DWCNT (e.g., (6,3)/(12,6)) will induce a rotational motion of the inner CNT that has a chirl angle θ (0° < θ < 30°). This telescoping-induced rotational motion does not exist for armchair and zigzag DWCNTs due to the symmetry of CNTs. The rotational angle is completely determined by the chirality of More >

Displaying 1-10 on page 1 of 2. Per Page