Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Exacerbated Cellular Senescence in Human Dopaminergic Neurons along with an Increase in LRRK2 Kinase Activity

    Dong Hwan Ho1,*, Minhyung Lee2,3, Daleum Nam1, Hyejung Kim1, Janghwan Kim2,3, Mi Kyoung Seo4,5, Sung Woo Park4,5, Ilhong Son1,6,*

    BIOCELL, Vol.49, No.7, pp. 1225-1244, 2025, DOI:10.32604/biocell.2025.065486 - 25 July 2025

    Abstract Background: Parkinson’s disease (PD) is a common neurodegenerative disease, characterized by symptoms like tremors, muscle rigidity, and slow movement. The main cause of these symptoms is the loss of dopamine-producing neurons in a brain area called the substantia nigra. Various genetic and environmental factors contribute to this neuronal loss. Once symptoms of PD begin, they worsen with age, which also impacts several critical cellular processes. Leucine-rich repeat kinase 2 (LRRK2) is a gene associated with PD. Certain mutations in LRRK2, such as G2019S, increase its activity, disrupting cellular mechanisms necessary for healthy neuron function, including… More >

  • Open Access

    ARTICLE

    Overexpression of Lmx1a/NeuroD1 Mediates the Differentiation of Pulmonary Mesenchymal Stem Cells into Dopaminergic Neurons and Repairs Motor Dysfunction in Parkinson’s Disease Rats

    Yiqin He1,2, Chenhan Hu1,2, Xiangshu Meng1,2, Rundong Ma1,2, Kexin Duan1,2, Yu Guo2,3, Changqing Liu1,2, Caiyun Ma1,2, Gaofeng Liu1,2,*, Chunjing Wang1,2,*

    BIOCELL, Vol.49, No.6, pp. 1037-1055, 2025, DOI:10.32604/biocell.2025.064633 - 24 June 2025

    Abstract Background: Mesenchymal stem cells (MSCs) have shown great potential in treating neurodegenerative diseases, including Parkinson’s disease (PD), due to their ability to differentiate into neurons and secrete neurotrophic factors. Genetic modification of MSCs for PD treatment has become a research focus. Methods: In this study, rat pulmonary mesenchymal stem cells (PMSCs) were transduced with lentiviral vectors carrying Lmx1a/NeuroD1 to establish genetically engineered PMSCs (LN-PMSCs) and induce their differentiation into dopaminergic neurons. The LN-PMSCs were then transplanted into the right medial forebrain bundle region of PD model rats prepared using the 6-Hydroxydopamine (6-OHDA) method. Four weeks… More >

  • Open Access

    REVIEW

    Pioneering a new era in Parkinson’s disease management through adipose-derived mesenchymal stem cell therapy

    MOHAMMAD-SADEGH LOTFI, FATEMEH B. RASSOULI*

    BIOCELL, Vol.48, No.10, pp. 1419-1428, 2024, DOI:10.32604/biocell.2024.053597 - 02 October 2024

    Abstract Parkinson’s disease (PD) is one of the fastest-growing neurodegenerative disorders worldwide. So far, PD treatments only offer little clinical relief and cannot reverse or stop the disease progression. Stem cell (SC) therapy is a rapidly evolving technology that holds significant promise for enhancing current therapeutic approaches. Adipose-derived mesenchymal SCs (AD-MSCs) have many features such as easy harvest with minimal invasive techniques, high plasticity, non-immunogenicity, and no ethical issues, which have made them suitable choices for clinical applications in regenerative research. AD-MSCs are ideal tools to treat PD, as they have the potential to differentiate into… More >

  • Open Access

    REVIEW

    Exercise and exerkine upregulation: Brain-derived neurotrophic factor as a potential non-pharmacological therapeutic strategy for Parkinson’s disease

    VIRAAJ VISHNU PRASAD, JENNIFER SALLY SAMSON, VENKATACHALAM DEEPA PARVATHI*

    BIOCELL, Vol.48, No.5, pp. 693-706, 2024, DOI:10.32604/biocell.2024.048776 - 06 May 2024

    Abstract Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual. In addition to aiding the regulation of aerobic and anaerobic metabolism, exercise can stimulate the synthesis of exerkine hormones in the circulatory system. Among several exerkines that have been investigated for their therapeutic potential, Brain-derived neurotrophic factor (BDNF) is considered the most promising candidate, especially in the management of neurodegenerative diseases. Owing to the ability of physical activity to enhance BDNF synthesis, several experimental studies conducted so far have validated this hypothesis and produced satisfactory results at More > Graphic Abstract

    Exercise and exerkine upregulation: Brain-derived neurotrophic factor as a potential non-pharmacological therapeutic strategy for Parkinson’s disease

Displaying 1-10 on page 1 of 4. Per Page