Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Mohamed Aashiq3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3655-3683, 2024, DOI:10.32604/cmc.2024.054610 - 12 September 2024

    Abstract The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic. As IoT devices often lack the inherent security measures found in more mature computing platforms, the need for robust DoS/DDoS detection systems tailored to IoT is paramount for… More >

  • Open Access

    ARTICLE

    New Denial of Service Attacks Detection Approach Using Hybridized Deep Neural Networks and Balanced Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.039111 - 26 May 2023

    Abstract Denial of Service (DoS/DDoS) intrusions are damaging cyber-attacks, and their identification is of great interest to the Intrusion Detection System (IDS). Existing IDS are mainly based on Machine Learning (ML) methods including Deep Neural Networks (DNN), but which are rarely hybridized with other techniques. The intrusion data used are generally imbalanced and contain multiple features. Thus, the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017, CSE-CICIDS2018 and CICDDoS 2019 datasets, according to the following key points. a) Three imbalanced CICIDS2017-2018-2019 datasets, including Benign and DoS/DDoS attack classes, are used.… More >

Displaying 1-10 on page 1 of 2. Per Page