Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Inductive and Deductive Scale-Bridging In Hierarchical Multiscale Models for Dislocation Pattern Formation in Metal Fatigue

    Yoshitaka Umeno1,*, Atsushi Kubo2, Emi Kawai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.012708

    Abstract Fatigue fracture accounts for a substantial fraction of failure cases in industrial products, especially in metal materials. While the mechanism of fatigue crack propagation can be understood in the mechanical point of view considering the effect of microstructures and crystal orientations on crack growth, there is still much room for investigations of the mechanism of fatigue crack formation under cyclic loading. It is widely understood that the fatigue crack formation in macroscopic metal materials originates in the persistent slip band (PSB) formed as a result of self-organization of dislocation structures [1]. Nevertheless, the PSB formation… More >

  • Open Access

    ARTICLE

    Initial Dislocation Structure and Dynamic Dislocation Multiplication In Mo Single Crystals

    L. M. Hsiung, D. H. Lassila1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 185-191, 2002, DOI:10.3970/cmes.2002.003.185

    Abstract Initial dislocation structures in as-annealed high-purity Mo single crystals, and deformation substructures of the crystals compressed at room temperature under different strain rates have been examined and studied in order to elucidate the physical mechanisms of dislocation multiplication and motion in the early stages of plastic deformation. The initial dislocation density was measured to be in a range of 106 ~ 107 cm−2. More importantly numerous grown-in superjogs were observed along screw dislocation lines. After testing in compression, dislocation density (mainly screw dislocations) increased to 107 ~ 108 cm−2. Besides, the formation of dislocation dipoles (debris) due to More >

Displaying 1-10 on page 1 of 2. Per Page