Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Prospect Theory Based Individual Irrationality Modelling and Behavior Inducement in Pandemic Control

    Wenxiang Dong, H. Vicky Zhao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 139-170, 2024, DOI:10.32604/cmes.2024.047156 - 16 April 2024

    Abstract Understanding and modeling individuals’ behaviors during epidemics is crucial for effective epidemic control. However, existing research ignores the impact of users’ irrationality on decision-making in the epidemic. Meanwhile, existing disease control methods often assume users’ full compliance with measures like mandatory isolation, which does not align with the actual situation. To address these issues, this paper proposes a prospect theory-based framework to model users’ decision-making process in epidemics and analyzes how irrationality affects individuals’ behaviors and epidemic dynamics. According to the analysis results, irrationality tends to prompt conservative behaviors when the infection risk is low More >

  • Open Access

    ARTICLE

    Dynamical Interaction Between Information and Disease Spreading in Populations of Moving Agents

    Lingling Xia1, Bo Song2,3, Zhengjun Jing4, Yurong Song5,*, Liang Zhang1

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 123-144, 2018, DOI:10.32604/cmc.2018.03738

    Abstract Considering dynamical disease spreading network consisting of moving individuals, a new double-layer network is constructed, one where the information dissemination process takes place and the other where the dynamics of disease spreading evolves. On the basis of Markov chains theory, a new model characterizing the coupled dynamics between information dissemination and disease spreading in populations of moving agents is established and corresponding state probability equations are formulated to describe the probability in each state of every node at each moment. Monte Carlo simulations are performed to characterize the interaction process between information and disease spreading More >

Displaying 1-10 on page 1 of 2. Per Page