Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Fuzzy Comprehensive Analysis of Static Mixers Used for Selective Catalytic Reduction in Diesel Engines

    Xin Luan1,*, Guoqing Su1, Hailong Chen1, Min Kuang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2459-2473, 2024, DOI:10.32604/fdmp.2024.054621 - 28 October 2024

    Abstract The proper selection of a relevant mixer generally requires an effective assessment of several models against the application requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses a urea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limited and the distance between the urea aqueous solution injection position and the reactor is low; therefore, the static mixer installed in this pipeline has special performance requirements. In particular,… More >

  • Open Access

    ARTICLE

    Optimal Design and Experimental Study of Tightly Coupled SCR Mixers for Diesel Engines

    Jianhua Zhang1,2, Wen Sun3, Zhijun Li1,*

    Energy Engineering, Vol.121, No.10, pp. 2893-2906, 2024, DOI:10.32604/ee.2024.051093 - 11 September 2024

    Abstract Two types of tightly coupled Selective Catalytic Reduction (SCR) mixers were designed in this study, namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately. Computational Fluid Dynamics (CFD) software was utilized to model the gas flow, spraying, and pyrolysis reaction of the aqueous urea solution in the tightly coupled SCR system. The parameters of gas flow velocity uniformity and ammonia distribution uniformity were simulated and calculated for both Mixer 1 and Mixer 2 in the tightly coupled SCR system to compare their advantages and disadvantages. The simulation results indicated that Mixer… More >

  • Open Access

    ARTICLE

    Optimizing Biodiesel Production from Karanja and Algae Oil with Nano Catalyst: RSM and ANN Approach

    Sujeet Kesharvani1, Sakhi Katre1, Suyasha Pandey1, Gaurav Dwivedi1,*, Tikendra Nath Verma2, Prashant Baredar1

    Energy Engineering, Vol.121, No.9, pp. 2363-2388, 2024, DOI:10.32604/ee.2024.052523 - 19 August 2024

    Abstract This study delves into biodiesel synthesis from non-edible oils and algae oil sources using Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) model to optimize biodiesel yield. Blend of C. vulgaris and Karanja oils is utilized, aiming to reduce free fatty acid content to 1% through single-step transesterification. Optimization reveals peak biodiesel yield conditions: 1% catalyst quantity, 91.47 min reaction time, 56.86°C reaction temperature, and 8.46:1 methanol to oil molar ratio. The ANN model outperforms RSM in yield prediction accuracy. Environmental impact assessment yields an E-factor of 0.0251 at maximum yield, indicating responsible production… More >

  • Open Access

    ARTICLE

    Simulation Study of Diesel Spray Tilt Angle and Ammonia Energy Ratio Effect on Ammonia-Diesel Dual-Fuel Engine Performance

    Zhifeng Zhao, Xuelong Miao*, Xu Chen, Jinbao Zheng, Yage Di, Zhenjie Bao, Zhuo Yang

    Energy Engineering, Vol.121, No.9, pp. 2603-2620, 2024, DOI:10.32604/ee.2024.051237 - 19 August 2024

    Abstract Ammonia-diesel dual fuel (ADDF) engines for transportation applications are an important way to reduce carbon emissions. In order to achieve better combustion of ammonia in diesel engines. A small-bore single-cylinder engine was converted into an ADDF engine with the help of mature computational fluid dynamics (CFD) simulation software to investigate the performance of an engine with a high ammonia energy ratio (AER), and to study the effect of spray tilt angle on ADDF engine. The results showed that the increase in AER reduced nitric oxide (NO) and nitrogen dioxide (NO) emissions but increased nitrous oxide… More >

  • Open Access

    REVIEW

    Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae

    ANJANI DEVI CHINTAGUNTA1, SAMUDRALA PRASHANT JEEVAN KUMAR2, NUNE SATYA SAMPATH KUMAR1,*

    BIOCELL, Vol.48, No.8, pp. 1181-1195, 2024, DOI:10.32604/biocell.2024.050540 - 02 August 2024

    Abstract Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern, which needs alternative sources to conventional fuels. Oleaginous microalgae have been explored for enhanced lipid production, leading towards biodiesel production. These microalgae have short life cycles, require less labor, and space, and are easy to scale up. Triacylglycerol, the primary source of lipids needed to produce biodiesel, is accumulated by most microalgae. The article focuses on different types of oleaginous microalgae, which can be used as a feedstock to produce biodiesel. Lipid biosynthesis in microalgae occurs through fatty acid More >

  • Open Access

    ARTICLE

    A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine

    Lingjie Zhao, Cong Li*

    Energy Engineering, Vol.121, No.5, pp. 1363-1380, 2024, DOI:10.32604/ee.2024.046918 - 30 April 2024

    Abstract The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder, thereby reducing NOx emissions. To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions, this study will perform a one-dimensional simulation of the performance of a marine diesel engine, as well as a three-dimensional simulation of the combustion in the cylinder. A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object. The chassis dynamometer and other related equipment are used to… More >

  • Open Access

    ARTICLE

    Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier

    Zhengyong Wang1, Jianhua Zhang2, Guoliang Su3, Peixing Yang4, Xiantao Fan4, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 193-204, 2024, DOI:10.32604/fdmp.2023.030561 - 08 November 2023

    Abstract A Diesel Particulate Filter (DPF) is a critical device for diesel engine exhaust products treatment. When using active-regeneration purification methods, on the one hand, a spatially irregular gas flow can produce relatively high local temperatures, potentially resulting in damage to the carrier; On the other hand, the internal temperature field can also undergo significant changes contributing to increase this risk. This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle (DTI) condition by means of bench tests. It is shown that the considered silicon carbide carrier exhibits… More >

  • Open Access

    ARTICLE

    Effect of Al2O3 Nanoparticles on the Compression Ignition Performances and Emitted Pollutants of a Diesel Engine

    Noora S. Ekab1, Ahmed Q. Salam2, Ali O. Abd3, Miqdam T. Chaichan4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2847-2861, 2023, DOI:10.32604/fdmp.2023.028874 - 18 September 2023

    Abstract To improve the performances of diesel engines and to reduce the pollutants they emit, aluminum oxide nanoparticles in varying quantities (50, 100, 150 ppm) have been added to conventional diesel fuel. The results of such experimental tests have revealed that the addition of nano-Al2O3 particles to the diesel fuel reduces its consumption by 0.488%, 1.02%, and 1.377%, respectively and increases the brake thermal efficiency by 1.4%, 2.6%, and 3.8%, respectively. The concentrations of undesired gases decrease accordingly by 1.5%, 1.7%, and 2.8% for HC and by 5.88%, 11.7%, and 17.6%, respectively, for CO. For the same More >

  • Open Access

    ARTICLE

    Optimization of a Diesel Injector Nozzle

    Yaofei Zhang1, Guoxiang Li1, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*, Yujie Jia2, Zhengxian Fang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2933-2951, 2023, DOI:10.32604/fdmp.2023.028804 - 18 September 2023

    Abstract Multiphase simulations based on the VOF (Volume of Fluid) approach, used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model, have been conducted to study the behavior of an injector nozzle as a function of relevant structural parameters (such as the spray hole diameter and length). The related performances have been optimized in the framework of orthogonal experimental design and range analysis methods. As made evident by the results, as the spray hole diameter increases from 0.10 to 0.20 mm, the outlet mass flow rate grows by 243.23%. A small diameter of More >

  • Open Access

    ARTICLE

    An Experimental Study on the Interaction between Hydrate Formation and Wax Precipitation in Waxy Oil-in-Water Emulsions

    Xincan Song1,3,4, Lin Wang1,3,4,*, Cheng Yu1,2, Jiaxin Chen1,3,4, Linjie Ma1,3,4

    Energy Engineering, Vol.120, No.8, pp. 1837-1852, 2023, DOI:10.32604/ee.2023.027637 - 05 June 2023

    Abstract The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow. Therefore, this paper conducts an experimental study on the characteristics of methane hydrate formation in a water-in-oil (W/O) system with different wax crystal contents and explores the influence of different initial experimental pressures on the induction period and maximum rate of hydrate formation. The wavelet function was introduced to process the reaction rate and calculate the maximum speed of hydrate formation. Notably, the higher the pressure, the smaller the… More >

Displaying 1-10 on page 1 of 54. Per Page