Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM

    Maryam Bukhari1, Sadaf Yasmin1, Sheneela Naz2, Mehr Yahya Durrani1, Mubashir Javaid3, Jihoon Moon4, Seungmin Rho5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1251-1279, 2023, DOI:10.32604/cmc.2023.040329 - 31 October 2023

    Abstract Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed… More >

  • Open Access

    ARTICLE

    Fuzzy Logic-Based System for Liver Fibrosis Disease

    Tamim Alkhalifah1,*, Jimmy Singla2, Fahad Alurise1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3559-3582, 2023, DOI:10.32604/csse.2023.036534 - 03 April 2023

    Abstract The diagnosis of liver fibrosis (LF) is crucial as it is a deadly and life-threatening disease. Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system, which helps to take decisions about patients’ health as experts can. The historical data of a patient’s health can have vagueness, inaccurate, and can also have missing values. The fuzzy logic theory can deal with these issues in the dataset. In this paper, a multilayer fuzzy expert system is developed to diagnose LF. The model is created by using multiple layers of… More >

  • Open Access

    ARTICLE

    A Novel Explainable CNN Model for Screening COVID-19 on X-ray Images

    Hicham Moujahid1, Bouchaib Cherradi1,2,*, Oussama El Gannour1, Wamda Nagmeldin3, Abdelzahir Abdelmaboud4, Mohammed Al-Sarem5,6, Lhoussain Bahatti1, Faisal Saeed7, Mohammed Hadwan8,9

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1789-1809, 2023, DOI:10.32604/csse.2023.034022 - 09 February 2023

    Abstract Due to the rapid propagation characteristic of the Coronavirus (COVID-19) disease, manual diagnostic methods cannot handle the large number of infected individuals to prevent the spread of infection. Despite, new automated diagnostic methods have been brought on board, particularly methods based on artificial intelligence using different medical data such as X-ray imaging. Thoracic imaging, for example, produces several image types that can be processed and analyzed by machine and deep learning methods. X-ray imaging materials widely exist in most hospitals and health institutes since they are affordable compared to other imaging machines. Through this paper,… More >

  • Open Access

    ARTICLE

    Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques

    R. Radha1,*, R. Gopalakrishnan2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3113-3127, 2023, DOI:10.32604/iasc.2023.030667 - 17 August 2022

    Abstract In the field of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity. Locating the defective cells precisely during the diagnosis phase helps to fight the greatest exterminator of mankind. Early detection of these defective cells requires an accurate computer-aided diagnostic system (CAD) that supports early treatment and promotes survival rates of patients. An earlier version of CAD systems relies greatly on the expertise of radiologist and it consumed more time to identify the defective… More >

  • Open Access

    ARTICLE

    Intelligent Medical Diagnostic System for Hepatitis B

    Dalwinder Singh1, Deepak Prashar1, Jimmy Singla1, Arfat Ahmad Khan2, Mohammed Al-Sarem3,4,*, Neesrin Ali Kurdi3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6047-6068, 2022, DOI:10.32604/cmc.2022.031255 - 28 July 2022

    Abstract The hepatitis B virus is the most deadly virus, which significantly affects the human liver. The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage; otherwise, it will become a severe problem and make a human liver suffer from the most dangerous diseases, such as liver cancer. In this paper, two medical diagnostic systems are developed for the diagnosis of this life-threatening virus. The methodologies used to develop these models are fuzzy logic and the neuro-fuzzy technique. The diverse… More >

  • Open Access

    REVIEW

    A Comprehensive Review on Medical Diagnosis Using Machine Learning

    Kaustubh Arun Bhavsar1, Ahed Abugabah2, Jimmy Singla1,*, Ahmad Ali AlZubi3, Ali Kashif Bashir4, Nikita5

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1997-2014, 2021, DOI:10.32604/cmc.2021.014943 - 05 February 2021

    Abstract The unavailability of sufficient information for proper diagnosis, incomplete or miscommunication between patient and the clinician, or among the healthcare professionals, delay or incorrect diagnosis, the fatigue of clinician, or even the high diagnostic complexity in limited time can lead to diagnostic errors. Diagnostic errors have adverse effects on the treatment of a patient. Unnecessary treatments increase the medical bills and deteriorate the health of a patient. Such diagnostic errors that harm the patient in various ways could be minimized using machine learning. Machine learning algorithms could be used to diagnose various diseases with high… More >

  • Open Access

    ARTICLE

    Image-Based Automatic Diagnostic System for Tomato Plants Using Deep Learning

    Shaheen Khatoon1,*, Md Maruf Hasan1, Amna Asif1, Majed Alshmari1, Yun-Kiam Yap2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 595-612, 2021, DOI:10.32604/cmc.2021.014580 - 12 January 2021

    Abstract Tomato production is affected by various threats, including pests, pathogens, and nutritional deficiencies during its growth process. If control is not timely, these threats affect the plant-growth, fruit-yield, or even loss of the entire crop, which is a key danger to farmers’ livelihood and food security. Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost. Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss. Recent developments in Artificial Intelligence (AI)… More >

Displaying 1-10 on page 1 of 7. Per Page