Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (488)
  • Open Access

    REVIEW

    Male Breast Cancer: Epidemiology, Diagnosis, Molecular Mechanisms, Therapeutics, and Future Prospective

    Ashok Kumar Sah1,*, Ranjay Kumar Choudhary1,2, Velilyaeva Alie Sabrievna3, Karomatov Inomdzhon Dzhuraevich4, Anass M. Abbas5, Manar G. Shalabi5, Nadeem Ahmad Siddique6, Raji Rubayyi Alshammari7, Navjyot Trivedi8, Rabab H. Elshaikh1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068238 - 30 December 2025

    Abstract Male breast cancer (MBC) is rare, representing 0.5%–1% of all breast cancers, but its incidence is increasing due to improved diagnostics and awareness. MBC typically presents in older men, is human epidermal growth factor receptor 2 (HER2)-negative and estrogen receptor (ER)-positive, and lacks routine screening, leading to delayed diagnosis and advanced disease. Major risk factors include hormonal imbalance, radiation exposure, obesity, alcohol use, and Breast Cancer Gene 1 and 2 (BRCA1/2) mutations. Clinically, it may resemble gynecomastia but usually appears as a unilateral, painless mass or nipple discharge. Advances in imaging and liquid biopsy have More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets

    Kwok Tai Chui1,*, Varsha Arya1, Brij B. Gupta2,3,4,*, Miguel Torres-Ruiz5, Razaz Waheeb Attar6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068842 - 10 November 2025

    Abstract Parkinson’s disease (PD) is a debilitating neurological disorder affecting over 10 million people worldwide. PD classification models using voice signals as input are common in the literature. It is believed that using deep learning algorithms further enhances performance; nevertheless, it is challenging due to the nature of small-scale and imbalanced PD datasets. This paper proposed a convolutional neural network-based deep support vector machine (CNN-DSVM) to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets. A customized kernel function reduces the impact… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer

    Yingyong Zou*, Yu Zhang, Long Li, Tao Liu, Xingkui Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068246 - 10 November 2025

    Abstract Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments. However, due to the nonlinearity and non-stationarity of collected vibration signals, single-modal methods struggle to capture fault features fully. This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion. The method first employs the Hippopotamus Optimization Algorithm (HO) to optimize the number of modes in Variational Mode Decomposition (VMD) to achieve optimal modal decomposition performance. It combines Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to extract temporal features… More >

  • Open Access

    REVIEW

    Machine Intelligence for Mental Health Diagnosis: A Systematic Review of Methods, Algorithms, and Key Challenges

    Ravita Chahar, Ashutosh Kumar Dubey*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-65, 2026, DOI:10.32604/cmc.2025.066990 - 10 November 2025

    Abstract Objective: The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods. Conditions such as anxiety, depression, stress, bipolar disorder (BD), and autism spectrum disorder (ASD) frequently arise from the complex interplay of demographic, biological, and socioeconomic factors, resulting in aggravated symptoms. This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions. Methods: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025. The potential… More >

  • Open Access

    REVIEW

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

    Somayah Albaradei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2937-2970, 2025, DOI:10.32604/cmes.2025.072584 - 23 December 2025

    Abstract Cancer deaths and new cases worldwide are projected to rise by 47% by 2040, with transitioning countries experiencing an even higher increase of up to 95%. Tumor severity is profoundly influenced by the timing, accuracy, and stage of diagnosis, which directly impacts clinical decision-making. Various biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, contribute to cancer development. The emergence of multi-omics technologies has transformed cancer research by revealing molecular alterations across multiple biological layers. This integrative approach supports the notion that cancer is fundamentally driven by such alterations, enabling the discovery of molecular signatures… More > Graphic Abstract

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

  • Open Access

    REVIEW

    A Systematic Review of Multimodal Fusion and Explainable AI Applications in Breast Cancer Diagnosis

    Deema Alzamil1,2,*, Bader Alkhamees2, Mohammad Mehedi Hassan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2971-3027, 2025, DOI:10.32604/cmes.2025.070867 - 23 December 2025

    Abstract Breast cancer diagnosis relies heavily on many kinds of information from diverse sources—like mammogram images, ultrasound scans, patient records, and genetic tests—but most AI tools look at only one of these at a time, which limits their ability to produce accurate and comprehensive decisions. In recent years, multimodal learning has emerged, enabling the integration of heterogeneous data to improve performance and diagnostic accuracy. However, doctors cannot always see how or why these AI tools make their choices, which is a significant bottleneck in their reliability, along with adoption in clinical settings. Hence, people are adding… More >

  • Open Access

    REVIEW

    A Review on Novel Applications of Nanoparticles in Pediatric Oncology

    Theano Makridou1, Elena Vlastou2, Vasilios Kouloulias3, Efstathios P. Efstathopoulos4, Kalliopi Platoni4,*

    Oncology Research, Vol.33, No.12, pp. 3611-3632, 2025, DOI:10.32604/or.2025.069101 - 27 November 2025

    Abstract Nanomedicine has evolved significantly over the last decades and expanded its applications in pediatric oncology, which represents a special domain with unique patients and distinct requirements. Τhe need for early cancer diagnosis and more effective and targeted therapies aiming to increase the pediatric patients’ survival rates and minimize the treatment-related side effects to survivors is profound. Nanoparticles (NPs) come as a beacon of hope to provide sensitive cancer diagnostic tools and assist contrast agents’ transport to the malignant tumors. Besides, NPs could be designed to deliver targeted drugs and genes to tumors, minimizing the medicine-related… More >

  • Open Access

    REVIEW

    Molecular Pathology of Ovarian Endometrioid Carcinoma: A Review

    Hiroshi Yoshida1,*, Mayumi Kobayashi Kato2

    Oncology Research, Vol.33, No.12, pp. 3701-3730, 2025, DOI:10.32604/or.2025.068432 - 27 November 2025

    Abstract Ovarian endometrioid carcinoma (OEC) accounts for ~10% of epithelial ovarian cancers and displays broad morphologic diversity that complicates diagnosis and grading. Recent data show that the endometrial cancer molecular taxonomy (DNA polymerase epsilon, catalytic subunit [POLE]-ultramutated, mismatch repair-deficient [MMRd], p53-abnormal, no specific molecular profile [NSMP]) also applies to OEC, and that OEC is enriched for Lynch syndrome–associated tumors, supporting routine MMR testing. We aimed to synthesize contemporary evidence spanning epidemiology, histopathology and immunophenotype, diagnostic pitfalls and differential diagnosis, and to evaluate the clinical utility of The Cancer Genome Atlas (TCGA)-surrogate molecular classification for risk stratification; More >

  • Open Access

    ARTICLE

    CEOE-Net: Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis

    Huihui Yang1, Saif Ur Rehman Khan2,*, Omair Bilal2, Chao Chen1,*, Ming Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025

    Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >

Displaying 1-10 on page 1 of 488. Per Page