Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access


    Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization

    Alawi Alqushaibi1,2,*, Mohd Hilmi Hasan1,2, Said Jadid Abdulkadir1,2, Amgad Muneer1,2, Mohammed Gamal1,2, Qasem Al-Tashi3, Shakirah Mohd Taib1,2, Hitham Alhussian1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3223-3238, 2023, DOI:10.32604/cmc.2023.035655

    Abstract Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction performance due to the hyperparameters… More >

  • Open Access


    H1-antihistamine use and head and neck cancer risk in type 2 diabetes mellitus


    Oncology Research, Vol.31, No.1, pp. 23-34, 2023, DOI:10.32604/or.2022.028449

    Abstract This study aimed to examine the association between the use of H1-antihistamines (AHs) and head and neck cancer (HNC) risk in patients with type 2 diabetes mellitus (T2DM). Data from the National Health Insurance Research Database of Taiwan were analyzed for the period from 2008 to 2018. A propensity-score-matched cohort of 54,384 patients each in the AH user and nonuser groups was created and analyzed using Kaplan-Meier method and Cox proportional hazards regression. The results showed that the risk of HNC was significantly lower in AH users (adjusted hazard ratio: 0.55, 95% CI: 0.48 to 0.64) and the incidence rate… More >

  • Open Access


    Chi-Square and PCA Based Feature Selection for Diabetes Detection with Ensemble Classifier

    Vaibhav Rupapara1, Furqan Rustam2, Abid Ishaq2, Ernesto Lee3, Imran Ashraf4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1931-1949, 2023, DOI:10.32604/iasc.2023.028257

    Abstract Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization. During the last few years, an alarming increase is observed worldwide with a 70% rise in the disease since 2000 and an 80% rise in male deaths. If untreated, it results in complications of many vital organs of the human body which may lead to fatality. Early detection of diabetes is a task of significant importance to start timely treatment. This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model… More >

  • Open Access


    Angiogenic Gene PTK2 is a Potential Biomarker of Gestational Diabetes Mellitus and is Significantly Associated with Breast Cancer Immune Infiltration

    Xuelian Du1,#, Hao Shi2,#, Haiyan Liu1, Linghua Zhou1, Anqun Xie1, Jufang Guo1,*

    Oncologie, Vol.24, No.4, pp. 769-787, 2022, DOI:10.32604/oncologie.2022.026248

    Abstract Background: Gestational diabetes mellitus (GDM) affects the health of numerous women around the world. A recent study has shown that GDM is associated with an increased incidence of cancer. In this study, we aimed to explore the possible shared mechanisms and potential common therapeutic targets between GDM and cancer. Methods: The limma package was used to identify differentially expressed genes (DEGs) in GDM. The Cytoscape plugin cytoHubba was used to screen hub genes. The CIBERSORT algorithm was used to explore the correlation between hub genes and immunity. Cox regression analysis was used to assess the relationship between protein tyrosine kinase… More >

  • Open Access


    Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus

    G. Geetha1,2,*, K. Mohana Prasad1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 703-718, 2023, DOI:10.32604/iasc.2023.032530

    Abstract Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure. It causes hyperglycemia and chronic multiorgan dysfunction, including blindness, renal failure, and cardiovascular disease, if left untreated. One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test, this procedure involves extracting blood quite frequently, which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring. Existing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems, to overcome these… More >

  • Open Access


    Advanced glycation end-products change placental barrier function and tight junction in rats with gestational diabetes mellitus via the receptor for advanced glycation end products/nuclear factor-κB pathway


    BIOCELL, Vol.47, No.1, pp. 165-173, 2023, DOI:10.32604/biocell.2022.023043

    Abstract The placenta plays an important role in nutrient transport to maintain the growth and development of the embryo. Gestational diabetes mellitus (GDM), the most common complication during pregnancy, highly affects placental function in late gestation. Advanced glycation end-products (AGEs), a complex and heterogeneous group of compounds engaged by the receptor for AGEs (RAGE), are closely associated with diabetes-related complications. In this study, AGEs induced a decrease in the expression of tight junction (TJ) proteins in BeWo cells and increased the paracellular permeability of trophoblast cells by regulating RAGE/NF-κB. Sprague-Dawley (SD) rats injected with 100 mg/kg AGEs-rat serum albumin (RSA) via… More >

  • Open Access


    Detection of Diabetic Retinopathy Using Custom CNN to Segment the Lesions

    Saleh Albahli1,2,*, Ghulam Nabi Ahmad Hassan Yar3

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 837-853, 2022, DOI:10.32604/iasc.2022.024427

    Abstract Diabetic retinopathy is an eye deficiency that affects the retina as a result of the patient having Diabetes Mellitus caused by high sugar levels. This condition causes the blood vessels that nourish the retina to swell and become distorted and eventually become blocked. In recent times, images have played a vital role in using convolutional neural networks to automatically detect medical conditions, retinopathy takes this to another level because there is need not for just a system that could determine is a patient has retinopathy, but also a system that could tell the severity of the procession and if it… More >

  • Open Access


    Analysis of specific lipid metabolites in cord blood of patients with gestational diabetes mellitus


    BIOCELL, Vol.46, No.6, pp. 1565-1573, 2022, DOI:10.32604/biocell.2022.018347

    Abstract This work aimed to clarify the interaction between the fetus and pregnant patients with gestational diabetes mellitus (GDM), the lipid metabolomics analysis of the fetal umbilical cord blood of GDM patients and normal pregnant women were performed to screen out the specific lipid metabolites for pathogenesis of GDM. From 2019–2020, 21 patients with GDM and 22 normal pregnant women were enrolled in Hexian Memorial Hospital, Panyu District, Guangzhou. The general information such as weight, height, age, body mass index (BMI) before pregnancy were analyzed. Non-targeted metabonomic detection and analysis were performed in umbilical cord plasma using LC-MS method. The age,… More >

  • Open Access


    Hybrid Online Model for Predicting Diabetes Mellitus

    C. Mallika1,*, S. Selvamuthukumaran2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1873-1885, 2022, DOI:10.32604/iasc.2022.020543

    Abstract Modern healthcare systems have become smart by synergizing the potentials of wireless sensors, the medical Internet of things, and big data science to provide better patient care while decreasing medical expenses. Large healthcare organizations generate and accumulate an incredible volume of data continuously. The already daunting volume of medical information has a massive amount of diagnostic features and logged details of patients for certain diseases such as diabetes. Diabetes mellitus has emerged as along-haul fatal disease across the globe and particularly in developing countries. Exact and early diagnosis of diabetes from big medical data is vital for the deterrence of… More >

  • Open Access


    Deep Learning Model to Detect Diabetes Mellitus Based on DNA Sequence

    Noha E. El-Attar1,*, Bossy M. Moustafa2, Wael A. Awad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 325-338, 2022, DOI:10.32604/iasc.2022.019970

    Abstract DNA sequence classification is considered a significant challenge for biological researchers to scientifically analyze the enormous volumes of biological data and discover different biological features. In genomic research, classifying DNA sequences may help learn and discover the new functions of a protein. Insulin is an example of a protein that the human body produces to regulate glucose levels. Any mutations in the insulin gene sequence would result in diabetes mellitus. Diabetes is one of the widely spread chronic diseases, leading to severe effects in the longer term if diagnosis and treatment are not appropriately taken. In this research, the authors… More >

Displaying 1-10 on page 1 of 17. Per Page  

Share Link