Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

  • Open Access

    ARTICLE

    Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features

    Wenkai Qin1, Tianliang Lu1,*, Lu Zhang2, Shufan Peng1, Da Wan1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 467-490, 2023, DOI:10.32604/cmc.2023.042417

    Abstract With the rapid development of deepfake technology, the authenticity of various types of fake synthetic content is increasing rapidly, which brings potential security threats to people's daily life and social stability. Currently, most algorithms define deepfake detection as a binary classification problem, i.e., global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false. However, the differences between real and fake samples are often subtle and local, and such global feature-based detection algorithms are not optimal in efficiency and accuracy. To this end, to enhance… More >

  • Open Access

    ARTICLE

    Deepfake Video Detection Based on Improved CapsNet and Temporal–Spatial Features

    Tianliang Lu*, Yuxuan Bao, Lanting Li

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 715-740, 2023, DOI:10.32604/cmc.2023.034963

    Abstract Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms, presenting risks for numerous countries, societies, and individuals, and posing a serious threat to cyberspace security. To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection, we propose a detection method based on improved CapsNet and temporal–spatial features (iCapsNet–TSF). First, the dynamic routing algorithm of CapsNet is improved using weight initialization and updating. Then, the optical flow algorithm is used to extract interframe temporal… More >

Displaying 1-10 on page 1 of 3. Per Page