Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with Explainable AI

    Sannasi Chakravarthy1, Bharanidharan Nagarajan2, Surbhi Bhatia Khan3,7,*, Vinoth Kumar Venkatesan2, Mahesh Thyluru Ramakrishna4, Ahlam Al Musharraf5, Khursheed Aurungzeb6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 5029-5045, 2024, DOI:10.32604/cmc.2024.052531 - 12 September 2024

    Abstract Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-B0 having a Spatial Attention Layer with More >

  • Open Access

    ARTICLE

    Track Defects Recognition Based on Axle-Box Vibration Acceleration and Deep-Learning Techniques

    Xianxian Yin1, Shimin Yin1, Yiming Bu2, Xiukun Wei3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 623-640, 2024, DOI:10.32604/sdhm.2024.050195 - 19 July 2024

    Abstract As an important component of load transfer, various fatigue damages occur in the track as the rail service life and train traffic increase gradually, such as rail corrugation, rail joint damage, uneven thermite welds, rail squats fastener defects, etc. Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit. In this paper, an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network, and the coexistence of the above-mentioned typical track defects in the track system… More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586 - 20 June 2024

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset

    Mohammed Zakariah1, Salman A. AlQahtani2,*, Abdulaziz M. Alawwad1, Abdullilah A. Alotaibi3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4025-4054, 2023, DOI:10.32604/cmc.2023.043752 - 26 December 2023

    Abstract Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic. By consuming time and resources, intrusive traffic hampers the efficient operation of network infrastructure. An effective strategy for preventing, detecting, and mitigating intrusion incidents will increase productivity. A crucial element of secure network traffic is Intrusion Detection System (IDS). An IDS system may be host-based or network-based to monitor intrusive network activity. Finding unusual internet traffic has become a severe security risk for intelligent devices. These systems are negatively impacted by several attacks, which are… More >

  • Open Access

    ARTICLE

    Abnormal Behavior Detection Using Deep-Learning-Based Video Data Structuring

    Min-Jeong Kim1, Byeong-Uk Jeon1, Hyun Yoo2, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2371-2386, 2023, DOI:10.32604/iasc.2023.040310 - 21 June 2023

    Abstract With the increasing number of digital devices generating a vast amount of video data, the recognition of abnormal image patterns has become more important. Accordingly, it is necessary to develop a method that achieves this task using object and behavior information within video data. Existing methods for detecting abnormal behaviors only focus on simple motions, therefore they cannot determine the overall behavior occurring throughout a video. In this study, an abnormal behavior detection method that uses deep learning (DL)-based video-data structuring is proposed. Objects and motions are first extracted from continuous images by combining existing More >

  • Open Access

    ARTICLE

    Partially Deep-Learning Encryption Technique

    Hamdy M. Mousa*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4277-4291, 2023, DOI:10.32604/cmc.2023.034593 - 31 October 2022

    Abstract The biggest problem facing the world is information security in the digital era. Information protection and integrity are hot topics at all times, so many techniques have been introduced to transmit and store data securely. The increase in computing power is increasing the number of security breaches and attacks at a higher rate than before on average. Thus, a number of existing security systems are at risk of hacking. This paper proposes an encryption technique called Partial Deep-Learning Encryption Technique (PD-LET) to achieve data security. PD-LET includes several stages for encoding and decoding digital data.… More >

  • Open Access

    ARTICLE

    Robust Vehicle Detection Based on Improved You Look Only Once

    Sunil Kumar1, Manisha Jailia1, Sudeep Varshney2, Nitish Pathak3, Shabana Urooj4,*, Nouf Abd Elmunim4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3561-3577, 2023, DOI:10.32604/cmc.2023.029999 - 31 October 2022

    Abstract Vehicle detection is still challenging for intelligent transportation systems (ITS) to achieve satisfactory performance. The existing methods based on one stage and two-stage have intrinsic weakness in obtaining high vehicle detection performance. Due to advancements in detection technology, deep learning-based methods for vehicle detection have become more popular because of their higher detection accuracy and speed than the existing algorithms. This paper presents a robust vehicle detection technique based on Improved You Look Only Once (RVD-YOLOv5) to enhance vehicle detection accuracy. The proposed method works in three phases; in the first phase, the K-means algorithm… More >

  • Open Access

    ARTICLE

    An Optimized Deep-Learning-Based Low Power Approximate Multiplier Design

    M. Usharani1,*, B. Sakthivel2, S. Gayathri Priya3, T. Nagalakshmi4, J. Shirisha5

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1647-1657, 2023, DOI:10.32604/csse.2023.027744 - 15 June 2022

    Abstract Approximate computing is a popular field for low power consumption that is used in several applications like image processing, video processing, multimedia and data mining. This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier. The multiplier is the most essential element used for approximate computing where the power consumption is majorly based on its performance. There are several researchers are worked on the approximate multiplier for power reduction for a few decades, but the design of low power approximate multiplier is not so easy. This seems a bigger challenge for… More >

  • Open Access

    ARTICLE

    Deep-Learning-Based Production Decline Curve Analysis in the Gas Reservoir through Sequence Learning Models

    Shaohua Gu1,2, Jiabao Wang3, Liang Xue3,*, Bin Tu3, Mingjin Yang3, Yuetian Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1579-1599, 2022, DOI:10.32604/cmes.2022.019435 - 19 April 2022

    Abstract Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery, which has an important impact on gas field development planning and economic evaluation. Owing to the model’s simplicity, the decline curve analysis method has been widely used to predict production performance. The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs. In this paper, a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed. The sequence learning methods used in production performance analysis herein include the… More >

Displaying 1-10 on page 1 of 18. Per Page