Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

    Sha Liu*, Jianfa Wu, Xuefeng Yang, Weiyang Xie, Cheng Chang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2301-2321, 2024, DOI:10.32604/fdmp.2024.052454 - 23 September 2024

    Abstract The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers. Given challenges such as intricate data analysis, absence of effective assessment methodologies, real-time control strategies, and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage, a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques. The research results show that: (1) The flowback stage of a deep gas well presents… More > Graphic Abstract

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

  • Open Access

    ARTICLE

    Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells

    Yi Song1, Zheyu Hu2,*, Cheng Shen1, Lan Ren2, Xingwu Guo1, Ran Lin2, Kun Wang3, Zhiyong Zhao4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 609-624, 2024, DOI:10.32604/fdmp.2023.030521 - 12 January 2024

    Abstract Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to the proximity of each fracture during the formation of the fracture network, there is significant stress interference, which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fracture openings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameter optimization model is introduced for these plugging balls based on a multi-cluster fracture propagation model and a perforation dynamic abrasion model. This approach relies on More > Graphic Abstract

    Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells

Displaying 1-10 on page 1 of 2. Per Page