Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Enhancing Early Detection of Lung Cancer through Advanced Image Processing Techniques and Deep Learning Architectures for CT Scans

    Nahed Tawfik1,*, Heba M. Emara2, Walid El-Shafai3, Naglaa F. Soliman4, Abeer D. Algarni4, Fathi E. Abd El-Samie4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 271-307, 2024, DOI:10.32604/cmc.2024.052404 - 15 October 2024

    Abstract Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins, including hereditary factors and various clinical changes. It stands as the deadliest type of cancer and a significant cause of cancer-related deaths globally. Early diagnosis enables healthcare providers to administer appropriate treatment measures promptly and accurately, leading to improved prognosis and higher survival rates. The significant increase in both the incidence and mortality rates of lung cancer, particularly its ranking as the second most prevalent cancer among women worldwide, underscores the need for comprehensive research into efficient… More >

  • Open Access

    ARTICLE

    The Human Eye Pupil Detection System Using BAT Optimized Deep Learning Architecture

    S. Navaneethan1,*, P. Siva Satya Sreedhar2, S. Padmakala3, C. Senthilkumar4

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 125-135, 2023, DOI:10.32604/csse.2023.034546 - 20 January 2023

    Abstract The pupil recognition method is helpful in many real-time systems, including ophthalmology testing devices, wheelchair assistance, and so on. The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size, occlusion of eyelids, and eyelashes. Deep Convolutional Neural Networks (DCNN) are being used in pupil recognition systems and have shown promising results in terms of accuracy. To improve accuracy and cope with larger datasets, this research work proposes BOC (BAT Optimized CNN)-IrisNet, which consists of optimizing input weights and hidden layers of DCNN… More >

  • Open Access

    ARTICLE

    Two-Stream Deep Learning Architecture-Based Human Action Recognition

    Faheem Shehzad1, Muhammad Attique Khan2, Muhammad Asfand E. Yar3, Muhammad Sharif1, Majed Alhaisoni4, Usman Tariq5, Arnab Majumdar6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5931-5949, 2023, DOI:10.32604/cmc.2023.028743 - 28 December 2022

    Abstract Human action recognition (HAR) based on Artificial intelligence reasoning is the most important research area in computer vision. Big breakthroughs in this field have been observed in the last few years; additionally, the interest in research in this field is evolving, such as understanding of actions and scenes, studying human joints, and human posture recognition. Many HAR techniques are introduced in the literature. Nonetheless, the challenge of redundant and irrelevant features reduces recognition accuracy. They also faced a few other challenges, such as differing perspectives, environmental conditions, and temporal variations, among others. In this work,… More >

  • Open Access

    ARTICLE

    Facial Action Coding and Hybrid Deep Learning Architectures for Autism Detection

    A. Saranya1,*, R. Anandan2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1167-1182, 2022, DOI:10.32604/iasc.2022.023445 - 08 February 2022

    Abstract Hereditary Autism Spectrum Disorder (ASD) is a neuron disorder that affects a person's ability for communication, interaction, and also behaviors. Diagnostics of autism are available throughout all stages of life, from infancy through adolescence and adulthood. Facial Emotions detection is considered to be the most parameter for the detection of Autismdisorders among the different categories of people. Propelled with a machine and deep learning algorithms, detection of autism disorder using facial emotions has reached a new dimension and has even been considered as the precautionary warning system for caregivers. Since Facial emotions are limited to… More >

  • Open Access

    ARTICLE

    Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM

    G. Jayandhi1,*, J.S. Leena Jasmine2, S. Mary Joans2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 491-503, 2022, DOI:10.32604/csse.2022.016376 - 09 September 2021

    Abstract The most common form of cancer for women is breast cancer. Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer. Thus, an automated computerized system with high accuracy is needed. In this study, an efficient Deep Learning Architecture (DLA) with a Support Vector Machine (SVM) is designed for breast cancer diagnosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual Geometric Group (VGG) architecture with 16 layers is employed in this study as it uses the small size of 3 × 3 convolution filters that reduces… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Architecture to Forecast Maximum Load Duration Using Time-of-Use Pricing Plans

    Jinseok Kim1, Babar Shah2, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 283-301, 2021, DOI:10.32604/cmc.2021.016042 - 22 March 2021

    Abstract Load forecasting has received crucial research attention to reduce peak load and contribute to the stability of power grid using machine learning or deep learning models. Especially, we need the adequate model to forecast the maximum load duration based on time-of-use, which is the electricity usage fare policy in order to achieve the goals such as peak load reduction in a power grid. However, the existing single machine learning or deep learning forecasting cannot easily avoid overfitting. Moreover, a majority of the ensemble or hybrid models do not achieve optimal results for forecasting the maximum… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Architecture for the Classification of Superhero Fashion Products: An Application for Medical-Tech Classification

    Inzamam Mashood Nasir1, Muhammad Attique Khan1,*, Majed Alhaisoni2, Tanzila Saba3, Amjad Rehman3, Tassawar Iqbal4

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1017-1033, 2020, DOI:10.32604/cmes.2020.010943 - 21 August 2020

    Abstract Comic character detection is becoming an exciting and growing research area in the domain of machine learning. In this regard, recently, many methods are proposed to provide adequate performance. However, most of these methods utilized the custom datasets, containing a few hundred images and fewer classes, to evaluate the performances of their models without comparing it, with some standard datasets. This article takes advantage of utilizing a standard publicly dataset taken from a competition, and proposes a generic data balancing technique for imbalanced dataset to enhance and enable the in-depth training of the CNN. In More >

  • Open Access

    ARTICLE

    R2N: A Novel Deep Learning Architecture for Rain Removal from Single Image

    Yecai Guo1,2,*, Chen Li1,2, Qi Liu3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 829-843, 2019, DOI:10.32604/cmc.2019.03729

    Abstract Visual degradation of captured images caused by rainy streaks under rainy weather can adversely affect the performance of many open-air vision systems. Hence, it is necessary to address the problem of eliminating rain streaks from the individual rainy image. In this work, a deep convolution neural network (CNN) based method is introduced, called Rain-Removal Net (R2N), to solve the single image de-raining issue. Firstly, we decomposed the rainy image into its high-frequency detail layer and low-frequency base layer. Then, we used the high-frequency detail layer to input the carefully designed CNN architecture to learn the mapping More >

Displaying 1-10 on page 1 of 8. Per Page