Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate

    Hongwei Guo3, Xiaoying Zhuang3,4,5, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 433-456, 2019, DOI:10.32604/cmc.2019.06660

    Abstract In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions More >

Displaying 1-10 on page 1 of 1. Per Page