Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    REVIEW

    A Systematic Literature Review of Deep Learning Algorithms for Segmentation of the COVID-19 Infection

    Shroog Alshomrani*, Muhammad Arif, Mohammed A. Al Ghamdi

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5717-5742, 2023, DOI:10.32604/cmc.2023.038059

    Abstract Coronavirus has infected more than 753 million people, ranging in severity from one person to another, where more than six million infected people died worldwide. Computer-aided diagnostic (CAD) with artificial intelligence (AI) showed outstanding performance in effectively diagnosing this virus in real-time. Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients. This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs. We used the methodology of systematic reviews and meta-analyses (PRISMA) flow method. This research aims… More >

  • Open Access

    ARTICLE

    Survey on Segmentation and Classification Techniques of Satellite Images by Deep Learning Algorithm

    Atheer Joudah1,*, Souheyl Mallat2, Mounir Zrigui1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4973-4984, 2023, DOI:10.32604/cmc.2023.036483

    Abstract This survey paper aims to show methods to analyze and classify field satellite images using deep learning and machine learning algorithms. Users of deep learning-based Convolutional Neural Network (CNN) technology to harvest fields from satellite images or generate zones of interest were among the planned application scenarios (ROI). Using machine learning, the satellite image is placed on the input image, segmented, and then tagged. In contemporary categorization, field size ratio, Local Binary Pattern (LBP) histograms, and color data are taken into account. Field satellite image localization has several practical applications, including pest management, scene analysis, and field tracking. The relationship… More >

  • Open Access

    ARTICLE

    Deep Learning Algorithm for Detection of Protein Remote Homology

    Fahriye Gemci1,*, Turgay Ibrikci2, Ulus Cevik3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3703-3713, 2023, DOI:10.32604/csse.2023.032706

    Abstract The study aims to find a successful solution by using computer algorithms to detect remote homologous proteins, which is a significant problem in the bioinformatics field. In this experimental study, structural classification of proteins (SCOP) 1.53, SCOP benchmark, and the newly created SCOP protein database from the structural classification of proteins—extended (SCOPe) 2.07 were used to detect remote homolog proteins. N-gram method and then Term Frequency-Inverse Document Frequency (TF-IDF) weighting were performed to extract features of the protein sequences taken from these databases. Next, a smoothing process on the obtained features was performed to avoid misclassification. Finally, the proteins with… More >

  • Open Access

    ARTICLE

    Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images

    P. S. Arthy1,*, A. Kavitha2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2959-2971, 2023, DOI:10.32604/iasc.2023.032511

    Abstract With the advent of Machine and Deep Learning algorithms, medical image diagnosis has a new perception of diagnosis and clinical treatment. Regrettably, medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques. However, the presence of noise images degrades both the diagnosis and clinical treatment processes. The existing intelligent methods suffer from the deficiency in handling the diverse range of noise in the versatile medical images. This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alleviate this challenge. The proposed deep learning architecture… More >

  • Open Access

    ARTICLE

    MPFracNet: A Deep Learning Algorithm for Metacarpophalangeal Fracture Detection with Varied Difficulties

    Geng Qin1, Ping Luo1, Kaiyuan Li1, Yufeng Sun1, Shiwei Wang1, Xiaoting Li1,2,3, Shuang Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 999-1015, 2023, DOI:10.32604/cmc.2023.035777

    Abstract Due to small size and high occult, metacarpophalangeal fracture diagnosis displays a low accuracy in terms of fracture detection and location in X-ray images. To efficiently detect metacarpophalangeal fractures on X-ray images as the second opinion for radiologists, we proposed a novel one-stage neural network named MPFracNet based on RetinaNet. In MPFracNet, a deformable bottleneck block (DBB) was integrated into the bottleneck to better adapt to the geometric variation of the fractures. Furthermore, an integrated feature fusion module (IFFM) was employed to obtain more in-depth semantic and shallow detail features. Specifically, Focal Loss and Balanced L1 Loss were introduced to… More >

  • Open Access

    ARTICLE

    Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors

    Majid Hussain1,2,*, Tayab Din Memon3,4, Imtiaz Hussain5, Zubair Ahmed Memon3, Dileep Kumar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 435-470, 2022, DOI:10.32604/cmes.2022.020583

    Abstract Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown. Recently, Motor Current Signature Analysis (MCSA) is widely reported as a condition monitoring technique in the detection and identification of individual and multiple Induction Motor (IM) faults. However, checking the fault detection and classification with deep learning models and its comparison among themselves or conventional approaches is rarely reported in the literature. Therefore, in this work, we present the detection and identification of induction motor faults with MCSA and three Deep Learning (DL) models namely MLP, LSTM, and… More >

  • Open Access

    ARTICLE

    Deep Learning Based Power Transformer Monitoring Using Partial Discharge Patterns

    D. Karthik Prabhu1,*, R. V. Maheswari2, B. Vigneshwaran2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1441-1454, 2022, DOI:10.32604/iasc.2022.024128

    Abstract Measurement and recognition of Partial Discharge (PD) in power apparatus is considered a protuberant tool for condition monitoring and assessing the state of a dielectric system. During operating conditions, PD may occur either in the form of single and multiple patterns in nature. Currently, for PD pattern recognition, deep learning approaches are used. To evaluate spatial order less features from the large-scale patterns, a pre-trained network is used. The major drawback of traditional approaches is that they generate high dimensional data or requires additional steps like dictionary learning and dimensionality reduction. However, in real-time applications, interference incorporated in the measured… More >

  • Open Access

    ARTICLE

    Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm

    Kelong Huang, Jie Yan, Lei Zhang*, Faye Zhang, Mingshun Jiang, Qingmei Sui

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 179-194, 2022, DOI: 10.32604/sdhm.2022.018202

    Abstract A structural displacement field reconstruction method is proposed to aim at the problems of deformation monitoring and displacement field reconstruction of flexible plate-like structures in the aerospace field. This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network. This paper first introduces the principle of strain detection of fiber grating sensor, studies the mapping relationship between strain and displacement, and proposes a strain-displacement conversion model based on an improved neural network. Then the intelligent structure deformation monitoring system is built. By controlling the stepping distance of the motor to produce different… More >

  • Open Access

    ARTICLE

    Improved Lightweight Deep Learning Algorithm in 3D Reconstruction

    Tao Zhang1,*, Yi Cao2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5315-5325, 2022, DOI:10.32604/cmc.2022.027083

    Abstract The three-dimensional (3D) reconstruction technology based on structured light has been widely used in the field of industrial measurement due to its many advantages. Aiming at the problems of high mismatch rate and poor real-time performance caused by factors such as system jitter and noise, a lightweight stripe image feature extraction algorithm based on You Only Look Once v4 (YOLOv4) network is proposed. First, Mobilenetv3 is used as the backbone network to effectively extract features, and then the Mish activation function and Complete Intersection over Union (CIoU) loss function are used to calculate the improved target frame regression loss, which… More >

  • Open Access

    ARTICLE

    Object Detection for Cargo Unloading System Based on Fuzzy C Means

    Sunwoo Hwang1, Jaemin Park1, Jongun Won2, Yongjang Kwon3, Youngmin Kim1,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4167-4181, 2022, DOI:10.32604/cmc.2022.023295

    Abstract With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry sector. Algorithm studies related to object recognition have been actively conducted in convergence with the emerging artificial intelligence field, but so far, algorithms suitable for automatic unloading devices that need to identify a number of unstructured cargoes require further development. In this study, the object recognition algorithm of the automatic loading device for cargo was selected as the subject of the study, and a cargo object recognition algorithm applicable to the automatic loading device is… More >

Displaying 1-10 on page 1 of 14. Per Page  

Share Link