Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Social Engineering Attack Classifications on Social Media Using Deep Learning

    Yichiet Aun1,*, Ming-Lee Gan1, Nur Haliza Binti Abdul Wahab2, Goh Hock Guan1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4917-4931, 2023, DOI:10.32604/cmc.2023.032373 - 28 December 2022

    Abstract In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom… More >

  • Open Access

    ARTICLE

    Detection Collision Flows in SDN Based 5G Using Machine Learning Algorithms

    Aqsa Aqdus1, Rashid Amin1,*, Sadia Ramzan1, Sultan S. Alshamrani2, Abdullah Alshehri3, El-Sayed M. El-kenawy4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1413-1435, 2023, DOI:10.32604/cmc.2023.031719 - 22 September 2022

    Abstract The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of data. The traffic control and data forwarding functions are decoupled in software-defined networking (SDN) and allow the network to be programmable. Each switch in SDN keeps track of forwarding information in a flow table. The SDN switches must search the flow table for the flow rules that match the packets to handle the incoming packets. Due to the obvious vast quantity of data in data centres, the capacity of the flow table restricts… More >

  • Open Access

    ARTICLE

    An Efficient Ensemble Model for Various Scale Medical Data

    Heba A. Elzeheiry*, Sherief Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1283-1305, 2022, DOI:10.32604/cmc.2022.027345 - 18 May 2022

    Abstract Electronic Health Records (EHRs) are the digital form of patients’ medical reports or records. EHRs facilitate advanced analytics and aid in better decision-making for clinical data. Medical data are very complicated and using one classification algorithm to reach good results is difficult. For this reason, we use a combination of classification techniques to reach an efficient and accurate classification model. This model combination is called the Ensemble model. We need to predict new medical data with a high accuracy value in a small processing time. We propose a new ensemble model MDRL which is efficient… More >

  • Open Access

    ARTICLE

    Prediction of Suitable Candidates for COVID-19 Vaccination

    R. Sujatha1, B. Venkata Siva Krishna1, Jyotir Moy Chatterjee2, P. Rahul Naidu1, NZ Jhanjhi3,*, Challa Charita1, Eza Nerin Mariya1, Mohammed Baz4

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 525-541, 2022, DOI:10.32604/iasc.2022.021216 - 26 October 2021

    Abstract In the current times, COVID-19 has taken a handful of people’s lives. So, vaccination is crucial for everyone to avoid the spread of the disease. However, not every vaccine will be perfect or will get success for everyone. In the present work, we have analyzed the data from the Vaccine Adverse Event Reporting System and understood that the vaccines given to the people might or might not work considering certain demographic factors like age, gender, and multiple other variables like the state of living, etc. This variable is considered because it explains the unmentioned variables… More >

Displaying 1-10 on page 1 of 4. Per Page