Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    Optimized Decision Tree and Black Box Learners for Revealing Genetic Causes of Bladder Cancer

    Sait Can Yucebas*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 49-71, 2023, DOI:10.32604/iasc.2023.036871

    Abstract The number of studies in the literature that diagnose cancer with machine learning using genome data is quite limited. These studies focus on the prediction performance, and the extraction of genomic factors that cause disease is often overlooked. However, finding underlying genetic causes is very important in terms of early diagnosis, development of diagnostic kits, preventive medicine, etc. The motivation of our study was to diagnose bladder cancer (BCa) based on genetic data and to reveal underlying genetic factors by using machine-learning models. In addition, conducting hyper-parameter optimization to get the best performance from different models, which is overlooked in… More >

  • Open Access

    ARTICLE

    Recognition of Hybrid PQ Disturbances Based on Multi-Resolution S-Transform and Decision Tree

    Feng Zhao1,2, Di Liao1,*, Xiaoqiang Chen1,2, Ying Wang1,2

    Energy Engineering, Vol.120, No.5, pp. 1133-1148, 2023, DOI:10.32604/ee.2023.025900

    Abstract Aiming at the problems of multiple types of power quality composite disturbances, strong feature correlation and high recognition error rate, a method of power quality composite disturbances identification based on multi-resolution S-transform and decision tree was proposed. Firstly, according to IEEE standard, the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given, and the disturbance waveform samples are generated in batches. Then, in order to improve the recognition accuracy, the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis. On this basis, five disturbance time-frequency domain… More >

  • Open Access

    ARTICLE

    Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data Analytics

    Manar Mohamed Hafez1,*, Essam Eldin F. Elfakharany1, Amr A. Abohany2, Mostafa Thabet3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 943-958, 2023, DOI:10.32604/cmc.2023.034078

    Abstract Big data is usually unstructured, and many applications require the analysis in real-time. Decision tree (DT) algorithm is widely used to analyze big data. Selecting the optimal depth of DT is time-consuming process as it requires many iterations. In this paper, we have designed a modified version of a (DT). The tree aims to achieve optimal depth by self-tuning running parameters and improving the accuracy. The efficiency of the modified (DT) was verified using two datasets (airport and fire datasets). The airport dataset has 500000 instances and the fire dataset has 600000 instances. A comparison has been made between the… More >

  • Open Access

    ARTICLE

    Vibration-Based Fault Diagnosis Study on a Hydraulic Brake System Using Fuzzy Logic with Histogram Features

    Alamelu Manghai T Marimuthu1, Jegadeeshwaran Rakkiyannan2,*, Lakshmipathi Jakkamputi1, Sugumaran Vaithiyanathan1, Sakthivel Gnanasekaran2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 383-396, 2022, DOI:10.32604/sdhm.2022.011396

    Abstract The requirement of fault diagnosis in the field of automobiles is growing higher day by day. The reliability of human resources for the fault diagnosis is uncertain. Brakes are one of the major critical components in automobiles that require closer and active observation. This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis. Vibration signals of a rotating element contain dynamic information about its health condition. Hence, the vibration signals were used for the brake fault diagnosis study. The study was carried out on a brake fault diagnosis experimental setup. The vibration signals… More >

  • Open Access

    ARTICLE

    Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning

    Hameedur Rahman1, Junaid Tariq2,*, M. Ali Masood1, Ahmad F. Subahi3, Osamah Ibrahim Khalaf4, Youseef Alotaibi5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5527-5543, 2023, DOI:10.32604/cmc.2023.033190

    Abstract Sentiment Analysis (SA) is often referred to as opinion mining. It is defined as the extraction, identification, or characterization of the sentiment from text. Generally, the sentiment of a textual document is classified into binary classes i.e., positive and negative. However, fine-grained classification provides a better insight into the sentiments. The downside is that fine-grained classification is more challenging as compared to binary. On the contrary, performance deteriorates significantly in the case of multi-class classification. In this study, pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored. To augment the performance, a multi-layer classification model… More >

  • Open Access

    ARTICLE

    Social Engineering Attack Classifications on Social Media Using Deep Learning

    Yichiet Aun1,*, Ming-Lee Gan1, Nur Haliza Binti Abdul Wahab2, Goh Hock Guan1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4917-4931, 2023, DOI:10.32604/cmc.2023.032373

    Abstract In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom dataset crawled from hundreds of… More >

  • Open Access

    ARTICLE

    Reconfigurable Sensing Time in Cooperative Cognitive Network Using Machine Learning

    Noor Gul1,2, Saeed Ahmed1,3, Su Min Kim1, Muhammad Sajjad Khan4, Junsu Kim1,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5209-5227, 2023, DOI:10.32604/cmc.2023.026945

    Abstract A cognitive radio network (CRN) intelligently utilizes the available spectral resources by sensing and learning from the radio environment to maximize spectrum utilization. In CRNs, the secondary users (SUs) opportunistically access the primary users (PUs) spectrum. Therefore, unambiguous detection of the PU channel occupancy is the most critical aspect of the operations of CRNs. Cooperative spectrum sensing (CSS) is rated as the best choice for making reliable sensing decisions. This paper employs machine-learning tools to sense the PU channels reliably in CSS. The sensing parameters are reconfigured to maximize the spectrum utilization while reducing sensing error and cost with improved… More >

  • Open Access

    ARTICLE

    Developing a Secure Framework Using Feature Selection and Attack Detection Technique

    Mahima Dahiya*, Nitin Nitin

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4183-4201, 2023, DOI:10.32604/cmc.2023.032430

    Abstract Intrusion detection is critical to guaranteeing the safety of the data in the network. Even though, since Internet commerce has grown at a breakneck pace, network traffic kinds are rising daily, and network behavior characteristics are becoming increasingly complicated, posing significant hurdles to intrusion detection. The challenges in terms of false positives, false negatives, low detection accuracy, high running time, adversarial attacks, uncertain attacks, etc. lead to insecure Intrusion Detection System (IDS). To offset the existing challenge, the work has developed a secure Data Mining Intrusion detection system (DataMIDS) framework using Functional Perturbation (FP) feature selection and Bengio Nesterov Momentum-based… More >

  • Open Access

    ARTICLE

    Federation Boosting Tree for Originator Rights Protection

    Yinggang Sun1, Hongguo Zhang1, Chao Ma1,*, Hai Huang1, Dongyang Zhan2,3, Jiaxing Qu4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4043-4058, 2023, DOI:10.32604/cmc.2023.031684

    Abstract The problem of data island hinders the application of big data in artificial intelligence model training, so researchers propose a federated learning framework. It enables model training without having to centralize all data in a central storage point. In the current horizontal federated learning scheme, each participant gets the final jointly trained model. No solution is proposed for scenarios where participants only provide training data in exchange for benefits, but do not care about the final jointly trained model. Therefore, this paper proposes a new boosted tree algorithm, called RPBT (the originator Rights Protected federated Boosted Tree algorithm). Compared with… More >

  • Open Access

    ARTICLE

    Multisensor Information Fusion for Condition Based Environment Monitoring

    A. Reyana1,*, P. Vijayalakshmi2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1013-1025, 2023, DOI:10.32604/iasc.2023.032538

    Abstract Destructive wildfires are becoming an annual event, similar to climate change, resulting in catastrophes that wreak havoc on both humans and the environment. The result, however, is disastrous, causing irreversible damage to the ecosystem. The location of the incident and the hotspot can sometimes have an impact on early fire detection systems. With the advancement of intelligent sensor-based control technologies, the multi-sensor data fusion technique integrates data from multiple sensor nodes. The primary objective to avoid wildfire is to identify the exact location of wildfire occurrence, allowing fire units to respond as soon as possible. Thus to predict the occurrence… More >

Displaying 1-10 on page 1 of 59. Per Page  

Share Link