Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (313)
  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction Model for Analysis Underwater Explosion Structural Damage Based on BDIM

    Biao Wang1, Yuxiang Peng1,*, Wenhua Xu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012061

    Abstract The damage process of ship structures under near-field underwater explosions involves strong nonlinear coupling effects of multiple media, and its numerical simulation poses a serious challenge to traditional numerical algorithms. Based on previous research, this article first establishes a highly compressible multiphase flow numerical calculation model based on the high-precision Discontinuous Galerkin Method (DGM) and a ship elastic-plastic damage dynamic model based on the meshless Reproducing Kernel Particle Method (RKPM). Furthermore, we develop an algorithm for grid-independent dynamic expansion of cracks. Based on this, the Boundary Data Immersion Method (BDIM) is used to couple the More >

  • Open Access

    PROCEEDINGS

    A Fail-Safe Topology Optimization for Multiscale Structures

    Jianghong Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011249

    Abstract Multiscale structures can be more robust to partial damage than solid structures. Inspired by this, a novel fail-safe topology optimization method is proposed for multiscale structures. Computational cost is reduced by simplifying the partial damage of the truss-like microstructure and polynomial function is used to fit the effective elasticity tensor obtained via the homogenization method. Moreover, Heaviside projection is applied to speed up the convergence and yield a relatively clear configuration. Numerical examples are tested to demonstrate the advantages of the optimized multiscale structures. Numerical examples are tested to demonstrate that the optimized multiscale structures More >

  • Open Access

    PROCEEDINGS

    Topology Optimization Method Considering Nonlinear Fatigue Damage Accumulation in Time Domain

    Jinyu Gu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010958

    Abstract In engineering practice, most components are subjected to variable-amplitude cyclic loading, resulting in fatigue damage, which is one of the main forms of damage in engineering structures. Nonlinear damage rule is developed based on linear damage rule, which can predict the fatigue life of structures more accurately. Therefore, we present a topology optimization method considering nonlinear fatigue damage accumulation in the time domain. For the time domain, we adopted the rainflow counting method to evaluate the stress level generated by cyclic loading and the Basquin equation to describe the S-N curve. We applied Morrow's plastic… More >

  • Open Access

    PROCEEDINGS

    A Novel Damage Model for Face-Centered Cubic Crystal Materials Incorporating Microscopic Crystal Cleavage and Slip Failure Mechanisms

    Qianyu Xia1, Zhixin Zhan1,*, Weiping Hu1, Qingchun Meng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011238

    Abstract The occurrence of crystal cleavage and slip at the microscopic level in single crystal materials serves as the fundamental underlying factors leading to their macroscopic failures. Therefore, investigating the failure mechanisms and damage processes at the scale of slip systems significantly enhances our comprehension of the degradation and failure patterns exhibited by crystal materials.
    In this study, based on the theory of crystal plasticity, we examine the effects of microscopic damage on the slip systems concerning the failure of face-centered cubic (FCC) crystal materials. Additionally, we develop a novel damage model for FCC crystal materials, incorporating… More >

  • Open Access

    ARTICLE

    Lovastatin modulation of YAP/TAZ signaling on cardiomyocyte autophagy and mitochondrial damage in myocardial I/R injury

    KAITIAN ZHANG1,#, MINGZHU LI2,#,*, JIANPING ZHANG3, JINFENG LI2, KUNLANG LI2, HUANQIAN LU2, JINYAN LV2

    BIOCELL, Vol.48, No.10, pp. 1489-1501, 2024, DOI:10.32604/biocell.2024.053930 - 02 October 2024

    Abstract Objective: Studies have demonstrated that administering statins promptly following myocardial ischemia/reperfusion (MI/R) can confer cardioprotective benefits. This study investigates whether Lovastatin can modulate the Yes-associated protein/Transcriptional co-activator with PDZ-binding motif (YAP/TAZ) signaling pathway to mitigate cardiomyocyte injury caused by hypoxia/reoxygenation (H/R). Methods: The in vitro MI/R model was established by H/R in rat myocardial H9c2 cells, and the cells were pretreated with varying doses of Lovastatin before reoxygenation. The extent of cellular injury was evaluated by measuring the myocardial enzyme content and cell viability. The levels of oxidative stress and inflammatory factors were quantified by enzyme-linked… More > Graphic Abstract

    Lovastatin modulation of YAP/TAZ signaling on cardiomyocyte autophagy and mitochondrial damage in myocardial I/R injury

  • Open Access

    ARTICLE

    Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages

    Giada Faraco, Andrea Vincenzo De Nunzio, Nicola Ivan Giannoccaro*, Arcangelo Messina

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 739-762, 2024, DOI:10.32604/sdhm.2024.052663 - 20 September 2024

    Abstract The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring, such as that carried out by a series of accelerometers placed on the structure, is certainly a goal of extreme and current interest. In the present work, the results obtained from the processing of experimental data of a real structure are shown. The analyzed structure is a lattice structure approximately 9 m high, monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels. The data used refer to continuous monitoring that lasted for a total of 1… More >

  • Open Access

    ARTICLE

    Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating

    Hao Xu1, Jing Wang2, Rubin Zhu2, Alfred Strauss3, Maosen Cao4, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 785-803, 2024, DOI:10.32604/sdhm.2024.051393 - 20 September 2024

    Abstract Delamination is a prevalent type of damage in composite laminate structures. Its accumulation degrades structural performance and threatens the safety and integrity of aircraft. This study presents a method for the quantitative identification of delamination identification in composite materials, leveraging distributed optical fiber sensors and a model updating approach. Initially, a numerical analysis is performed to establish a parameterized finite element model of the composite plate. Then, this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations. The radial basis function neural network surrogate model is then constructed More >

  • Open Access

    ARTICLE

    Numerical modeling of progressive damage and failure of tunnels deeply-buried in rock considering the strain-energy-density theory

    Qian Sun1, Chao Yuan2, Shisen Zhao3

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.2, pp. 1-8, 2024, DOI:10.23967/j.rimni.2024.06.001 - 19 June 2024

    Abstract Exploring the rock failure mechanism from an energy perspective is crucial for ensuring the safe construction of tunnels under complex geological conditions. In this study, a progressive damage and failure model of rock elements is established using the strain-energy-density theory based on the thermodynamic theory. Specifically, the rock elements are considered to have failed when the strain energy density absorbed by the element is greater than the critical strain energy density. Besides, the damage evolution of rock elements is reflected through the reduction of elastic modulus, until the element only has a certain residual strength.… More >

  • Open Access

    ARTICLE

    Seed Priming with Potassium Nitrate Can Enhance Salt Stress Tolerance in Maize

    Bushra Rehman1, Asma Zulfiqar1, Houneida Attia2, Rehana Sardar3, Muneera A. Saleh2, Khalid H. Alamer4, Ibtisam M. Alsudays5, Faisal Mehmood6, Qamar uz Zaman7,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1819-1838, 2024, DOI:10.32604/phyton.2024.048780 - 30 August 2024

    Abstract Salinity is a major abiotic stress that hinders plant development and productivity and influences agricultural yield. Seed priming is a technique used to boost germination and seedling growth under abiotic stress. A pot experiment was conducted to evaluate the impact of seed priming with potassium nitrate (KNO3) at various levels (0%, 0.50%, 1.00% and 1.50%) under salt stress (0, 75, 100 mM NaCl) on two maize verities (MNH360 and 30T60) for the growth, development and metabolic attributes results revealed that in maize variety MNH360, KNO3 priming’s significantly enhanced growth parameters than in maize variety 30T60 under… More >

  • Open Access

    ARTICLE

    Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag, Bohai Bay Basin

    Suogui Shang1, Kechao Gao1, Qingbin Wang1, Xinghua Zhang1, Pengli Zhou2,3,*, Jianhua Li2,3, Peng Chu2,3

    Energy Engineering, Vol.121, No.9, pp. 2505-2524, 2024, DOI:10.32604/ee.2024.050094 - 19 August 2024

    Abstract Hydraulic fracturing is a mature and effective method for deep oil and gas production, which provides a foundation for deep oil and gas production. One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions. In this work, based on outcrop core samples, high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag. Additionally, this study analyzes the deformation and damage law for rock under different stress conditions. Wherein, with a particular focus… More >

Displaying 1-10 on page 1 of 313. Per Page