Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells

    Shengchao Zhang, Jun Yuan, Ruheng Zheng

    Oncology Research, Vol.24, No.4, pp. 263-269, 2016, DOI:10.3727/096504016X14666990347392

    Abstract Recently, deubiquitinating enzymes (DUBs) are emerging as new regulators in cancer progression. However, understanding of the involvement of DUBs in non-small cell lung cancer (NSCLC) is just beginning. In this study, we investigated the expression and biological function of ubiquitin-specific peptidase 17 (USP17) in NSCLC progression in vitro and in vivo. We found that the expression of USP17 was higher than in a normal control. We further efficiently depleted USP17 expression in two different NSCLC cells, A549 and H1299. The anchorage-independent growth ability of these cells, estimated by soft agar colony formation assay, was significantly More >

  • Open Access

    ARTICLE

    miR-133b Inhibits Cell Growth, Migration, and Invasion by Targeting MMP9 in Non-Small Cell Lung Cancer

    Yan Zhen*1, Jia Liu*†1, Yujie Huang*†1, Yajun Wang*, Wen Li*†, Jun Wu*†

    Oncology Research, Vol.25, No.7, pp. 1109-1116, 2017, DOI:10.3727/096504016X14800889609439

    Abstract Although increasing evidence indicates that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the role of miR-133b in human non-small cell lung cancer (NSCLC). In the present study, we revealed that the introduction of miR-133b dramatically suppressed NSCLC cell growth, migration, and invasion in vitro. On the contrary, miR-133b inhibitors promoted cell growth, migration, and invasion in vitro. Further studies revealed that matrix metallopeptidase 9 (MMP9) is a direct target gene of miR-133b. Silencing MMP9 inhibited cell growth, migration, and invasion of NSCLC cells, which was consistent with the More >

  • Open Access

    ARTICLE

    High TRAF6 Expression Is Associated With Esophageal Carcinoma Recurrence and Prompts Cancer Cell Invasion

    Xinyang Liu*1, Zhichao Wang†1, Guoliang Zhang‡1, Qikun Zhu, Hui Zeng, Tao Wang, Feng Gao, Zhan Qi, Jinwen Zhang§, Rui Wang

    Oncology Research, Vol.25, No.4, pp. 485-493, 2017, DOI:10.3727/096504016X14749340314441

    Abstract Esophageal cancer is one of the most common types of cancer, and it has a poor prognosis. The molecular mechanisms of esophageal cancer progression remain largely unknown. In this study, we aimed to investigate the clinical significance and biological function of tumor necrosis factor receptor-associated factor 6 (TRAF6) in esophageal cancer. Expression of TRAF6 in esophageal cancer was examined, and its correlation with clinicopathological factors and patient prognosis was analyzed. A series of functional and mechanism assays were performed to further investigate the function and underlying mechanisms in esophageal cancer. Expression of TRAF6 was highly… More >

  • Open Access

    ARTICLE

    Suppression of Asparaginyl Endopeptidase Inhibits Polyomavirus Middle T Antigen-Induced Tumor Formation and Metastasis

    Cheng Xu*1, Lu Cao*1, Jianhua Liu†1, Zhongrun Qian, Yu Peng§, Wenjing Zhu§, Yongming Qiu, Yingying Lin‡¶

    Oncology Research, Vol.25, No.3, pp. 407-415, 2017, DOI:10.3727/096504016X14743350548249

    Abstract Elevated circulating asparaginyl endopeptidase (AEP), a novel lysosomal protease, has been found in breast cancer, and AEP is thus considered to be a prognostic factor in this disease. However, the pathological functions of circulating AEP in the development of breast cancer and the potential of AEP-targeted therapy remain unclear. We used MMTV-PyVmT transgenic mice, which spontaneously develop mammary tumors. Western blotting showed overexpression of AEP in both primary tumor tissue and lung metastases compared to their normal counterparts. Moreover, the concentration of circulating AEP gradually increased in the serum during the development of mammary tumors. More >

  • Open Access

    ARTICLE

    LDAS&ET-AD: Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation

    Shuyi Li, Hongchao Hu*, Xiaohan Yang, Guozhen Cheng, Wenyan Liu, Wei Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2331-2359, 2024, DOI:10.32604/cmc.2024.047275

    Abstract Adversarial distillation (AD) has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training. However, fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation. Additionally, the reliability of guidance from static teachers diminishes as target models become more robust. This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation (LDAS&ET-AD). Firstly, a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation. A strategy model is introduced to produce attack strategies that… More >

  • Open Access

    ARTICLE

    Neural Wiskott-Aldrich syndrome protein (N-WASP) promotes distant metastasis in pancreatic ductal adenocarcinoma via activation of LOXL2

    HYUNG SUN KIM1,#, YUN SUN LEE2,#, SEUNG MYUNG DONG3, HYO JUNG KIM1, DA EUN LEE2, HYEON WOONG KANG2, MYEONG JIN KIM2, JOON SEONG PARK1,*

    Oncology Research, Vol.32, No.4, pp. 615-624, 2024, DOI:10.32604/or.2024.044029

    Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies. A specific mechanism of its metastasis has not been established. In this study, we investigated whether Neural Wiskott-Aldrich syndrome protein (N-WASP) plays a role in distant metastasis of PDAC. We found that N-WASP is markedly expressed in clinical patients with PDAC. Clinical analysis showed a notably more distant metastatic pattern in the N-WASP-high group compared to the N-WASP-low group. N-WASP was noted to be a novel mediator of epithelial-mesenchymal transition (EMT) via gene expression profile studies. Knockdown of N-WASP in pancreatic cancer cells… More > Graphic Abstract

    Neural Wiskott-Aldrich syndrome protein (N-WASP) promotes distant metastasis in pancreatic ductal adenocarcinoma via activation of LOXL2

  • Open Access

    ARTICLE

    Transcriptome-Wide Identification and Functional Analysis of PgSQE08-01 Gene in Ginsenoside Biosynthesis in Panax ginseng C. A. Mey.

    Lei Zhu1,#, Lihe Hou1,3,#, Yu Zhang1, Yang Jiang1, Yi Wang1,2, Meiping Zhang1,2, Mingzhu Zhao1,2,*, Kangyu Wang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 313-327, 2024, DOI:10.32604/phyton.2024.047938

    Abstract Panax ginseng C. A. Mey. is an important plant species used in traditional Chinese medicine, whose primary active ingredient is a ginsenoside. Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes. Nonetheless, the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites. Squalene epoxidase (SQE) is a key enzyme in the mevalonic acid pathway, which affects the biosynthesis of secondary metabolites such as terpenoid. Using ginseng transcriptome, expression, and ginsenoside content databases, this study employed bioinformatic methods to systematically… More >

  • Open Access

    REVIEW

    Extracellular vesicles and angiotensin-converting enzyme 2 in COVID-19 disease

    YU LIU*, ROBERT J. KASPER, NATALIE J. S. CHOI*

    BIOCELL, Vol.48, No.1, pp. 1-8, 2024, DOI:10.32604/biocell.2023.031158

    Abstract Extracellular vesicles (EVs) are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions. Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells. Coronavirus disease 2019 (COVID-19) disease is caused by infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of host cells in the respiratory system and various extra-pulmonary tissue/organs, resulting in complications of multiple organ systems. As the cell surface receptor, angiotensin-converting enzyme 2 (ACE2) mediates cellular entry of SARS-CoV-2 into the host… More >

  • Open Access

    ARTICLE

    Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder

    Siti Nur Ainsyah Ghani1, Noor Fadiya Mohd Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1017-1037, 2024, DOI:10.32604/cmes.2023.031372

    Abstract Variant graphene, graphene oxides (GO), and graphene nanoplatelets (GNP) dispersed in blood-based copper (Cu) nanoliquids over a leaning permeable cylinder are the focus of this study. These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy, anti-infection measures, and drug delivery. The non-Newtonian Sutterby (blood-based) hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources. The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions. These equations are then… More >

Displaying 1-10 on page 1 of 52. Per Page