Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Resource Allocation and Power Control Policy for Device-toDevice Communication Using Multi-Agent Reinforcement Learning

    Yifei Wei1, *, Yinxiang Qu1, Min Zhao1, Lianping Zhang2, F. Richard Yu3

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1515-1532, 2020, DOI:10.32604/cmc.2020.09130 - 30 April 2020

    Abstract Device-to-Device (D2D) communication is a promising technology that can reduce the burden on cellular networks while increasing network capacity. In this paper, we focus on the channel resource allocation and power control to improve the system resource utilization and network throughput. Firstly, we treat each D2D pair as an independent agent. Each agent makes decisions based on the local channel states information observed by itself. The multi-agent Reinforcement Learning (RL) algorithm is proposed for our multi-user system. We assume that the D2D pair do not possess any information on the availability and quality of the… More >

Displaying 1-10 on page 1 of 1. Per Page