Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Intrusion Detection Systems in Industrial Control Systems: Landscape, Challenges and Opportunities

    Tong Wu, Dawei Zhou, Qingyu Ou*, Fang Luo

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073482 - 12 January 2026

    Abstract The increasing interconnection of modern industrial control systems (ICSs) with the Internet has enhanced operational efficiency, but also made these systems more vulnerable to cyberattacks. This heightened exposure has driven a growing need for robust ICS security measures. Among the key defences, intrusion detection technology is critical in identifying threats to ICS networks. This paper provides an overview of the distinctive characteristics of ICS network security, highlighting standard attack methods. It then examines various intrusion detection methods, including those based on misuse detection, anomaly detection, machine learning, and specialised requirements. This paper concludes by exploring More >

  • Open Access

    ARTICLE

    Explainable Machine Learning for Phishing Detection: Bridging Technical Efficacy and Legal Accountability in Cyberspace Security

    MD Hamid Borkot Tulla1,*, MD Moniur Rahman Ratan2, Rashid MD Mamunur3, Abdullah Hil Safi Sohan4, MD Matiur Rahman5

    Journal of Cyber Security, Vol.7, pp. 675-691, 2025, DOI:10.32604/jcs.2025.074737 - 24 December 2025

    Abstract Phishing is considered one of the most widespread cybercrimes due to the fact that it combines both technical and human vulnerabilities with the intention of stealing sensitive information. Traditional blacklist and heuristic-based defenses fail to detect such emerging attack patterns; hence, intelligent and transparent detection systems are needed. This paper proposes an explainable machine learning framework that integrates predictive performance with regulatory accountability. Four models were trained and tested on a balanced dataset of 10,000 URLs, comprising 5000 phishing and 5000 legitimate samples, each characterized by 48 lexical and content-based features: Decision Tree, XGBoost, Logistic… More >

  • Open Access

    ARTICLE

    MUS Model: A Deep Learning-Based Architecture for IoT Intrusion Detection

    Yu Yan1, Yu Yang1,*, Shen Fang1, Minna Gao2, Yiding Chen1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 875-896, 2024, DOI:10.32604/cmc.2024.051685 - 18 July 2024

    Abstract In the face of the effective popularity of the Internet of Things (IoT), but the frequent occurrence of cybersecurity incidents, various cybersecurity protection means have been proposed and applied. Among them, Intrusion Detection System (IDS) has been proven to be stable and efficient. However, traditional intrusion detection methods have shortcomings such as low detection accuracy and inability to effectively identify malicious attacks. To address the above problems, this paper fully considers the superiority of deep learning models in processing high-dimensional data, and reasonable data type conversion methods can extract deep features and detect classification using… More >

Displaying 1-10 on page 1 of 3. Per Page