Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    ARTICLE

    A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM

    Navaneetha Krishnan Muthunambu1, Senthil Prabakaran2, Balasubramanian Prabhu Kavin3, Kishore Senthil Siruvangur4, Kavitha Chinnadurai1, Jehad Ali5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3089-3127, 2024, DOI:10.32604/cmc.2023.043172 - 26 March 2024

    Abstract The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet. Regrettably, this development has expanded the potential targets that hackers might exploit. Without adequate safeguards, data transmitted on the internet is significantly more susceptible to unauthorized access, theft, or alteration. The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks. This research paper introduces a novel intrusion detection framework that utilizes Recurrent… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794 - 27 February 2024

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work.… More >

  • Open Access

    ARTICLE

    An Effective Threat Detection Framework for Advanced Persistent Cyberattacks

    So-Eun Jeon1, Sun-Jin Lee1, Eun-Young Lee1, Yeon-Ji Lee2, Jung-Hwa Ryu2, Jung-Hyun Moon2, Sun-Min Yi2, Il-Gu Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4231-4253, 2023, DOI:10.32604/cmc.2023.034287 - 31 March 2023

    Abstract Recently, with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic, the possibility of cyberattacks through endpoints has increased. Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats. In particular, because telecommuting, telemedicine, and tele-education are implemented in uncontrolled environments, attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information, and reports of endpoint attacks have been increasing considerably. Advanced persistent threats (APTs) using various novel variant malicious codes are a form of a sophisticated attack. However, conventional commercial antivirus and… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Feature Selection with Stacked Deep Learning-Enabled Cyber-Attack Detection Model

    Mashael M Asiri1, Heba G. Mohamed2, Mohamed K Nour3, Mesfer Al Duhayyim4,*, Amira Sayed A. Aziz5, Abdelwahed Motwakel6, Abu Sarwar Zamani6, Mohamed I. Eldesouki7

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1679-1694, 2023, DOI:10.32604/csse.2023.031063 - 03 November 2022

    Abstract Due to exponential increase in smart resource limited devices and high speed communication technologies, Internet of Things (IoT) have received significant attention in different application areas. However, IoT environment is highly susceptible to cyber-attacks because of memory, processing, and communication restrictions. Since traditional models are not adequate for accomplishing security in the IoT environment, the recent developments of deep learning (DL) models find beneficial. This study introduces novel hybrid metaheuristics feature selection with stacked deep learning enabled cyber-attack detection (HMFS-SDLCAD) model. The major intention of the HMFS-SDLCAD model is to recognize the occurrence of cyberattacks… More >

  • Open Access

    ARTICLE

    Anomaly Detection for Industrial Internet of Things Cyberattacks

    Rehab Alanazi*, Ahamed Aljuhani

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2361-2378, 2023, DOI:10.32604/csse.2023.026712 - 01 August 2022

    Abstract The evolution of the Internet of Things (IoT) has empowered modern industries with the capability to implement large-scale IoT ecosystems, such as the Industrial Internet of Things (IIoT). The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational and financial harm to organizations. To preserve the confidentiality, integrity, and availability of IIoT networks, an anomaly-based intrusion detection system (IDS) can be used to provide secure, reliable, and efficient IIoT ecosystems. In this paper, we propose an anomaly-based IDS for IIoT networks as an effective security… More >

  • Open Access

    ARTICLE

    Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model

    Hadil Shaiba1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Radwa Marzouk4, Heba Mohsen5, Manar Ahmed Hamza6,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6425-6441, 2022, DOI:10.32604/cmc.2022.031625 - 28 July 2022

    Abstract Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords, account identifiers, bank details, etc. In general, these kinds of cyberattacks are made at users through phone calls, emails, or instant messages. The anti-phishing techniques, currently under use, are mainly based on source code features that need to scrape the webpage content. In third party services, these techniques check the classification procedure of phishing Uniform Resource Locators (URLs). Even though Machine Learning (ML) techniques have been lately utilized in the identification of phishing, they still need… More >

  • Open Access

    ARTICLE

    Anomaly Detection for Internet of Things Cyberattacks

    Manal Alanazi*, Ahamed Aljuhani

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 261-279, 2022, DOI:10.32604/cmc.2022.024496 - 24 February 2022

    Abstract The Internet of Things (IoT) has been deployed in diverse critical sectors with the aim of improving quality of service and facilitating human lives. The IoT revolution has redefined digital services in different domains by improving efficiency, productivity, and cost-effectiveness. Many service providers have adapted IoT systems or plan to integrate them as integral parts of their systems’ operation; however, IoT security issues remain a significant challenge. To minimize the risk of cyberattacks on IoT networks, anomaly detection based on machine learning can be an effective security solution to overcome a wide range of IoT… More >

  • Open Access

    ARTICLE

    DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection

    Ziadoon K. Maseer1, Robiah Yusof1, Salama A. Mostafa2,*, Nazrulazhar Bahaman1, Omar Musa3, Bander Ali Saleh Al-rimy4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3945-3966, 2021, DOI:10.32604/cmc.2021.016074 - 24 August 2021

    Abstract With an increasing number of services connected to the internet, including cloud computing and Internet of Things (IoT) systems, the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points. Recently, researchers have suggested deep learning (DL) algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks. However, due to the high dynamics and imbalanced nature of the data, the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks. Therefore,… More >

Displaying 1-10 on page 1 of 9. Per Page