Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Scattered Data Interpolation Using Cubic Trigonometric Bézier Triangular Patch

    Ishak Hashim1, Nur Nabilah Che Draman2, Samsul Ariffin Abdul Karim3,*, Wee Ping Yeo4, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 221-236, 2021, DOI:10.32604/cmc.2021.016006 - 04 June 2021

    Abstract This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with continuity everywhere. We derive the condition on each adjacent triangle. On each triangular patch, we employ convex combination method between three local schemes. The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets. We tested the proposed scheme with 36,65, and 100 data points for some well-known test functions. The scheme is also applied to interpolate the data for the electric potential. We compared the performance between our proposed method and existing scattered data interpolation More >

  • Open Access

    ARTICLE

    A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion

    Kamil Khan1, Arshed Ali1,*, Fazal-i-Haq2, Iltaf Hussain3, Nudrat Amir4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 673-692, 2021, DOI:10.32604/cmes.2021.012730 - 21 January 2021

    Abstract This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation (PIDE) with a weakly singular kernel. Cubic trigonometric B-spline (CTBS) functions are used for interpolation in both methods. The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations. The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values. An efficient tridiagonal solver is used for the solution of the linear system… More >

  • Open Access

    ARTICLE

    A Differential Quadrature Based Approach for Volterra Partial Integro-Differential Equation with a Weakly Singular Kernel

    Siraj-ul-Islam1, Arshed Ali2,*, Aqib Zafar1, Iltaf Hussain1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 915-935, 2020, DOI:10.32604/cmes.2020.011218 - 21 August 2020

    Abstract Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency, and is mentioned as potential alternative of conventional numerical methods. In this paper, a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel. The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative. The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation (IDE). The More >

Displaying 1-10 on page 1 of 3. Per Page