Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    PROCEEDINGS

    Investigation of Multiaxial Creep Rupture Mechanisms and Life Prediction in High-Temperature Alloys Under Complex Environments

    Dongxu Zhang1,*, Kaitai Feng1, Menghui Lv1, Zhixun Wen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.012317

    Abstract Modern advanced equipment is often in high-temperature and high-load service environment for a long time, in which multiaxial creep rupture is one of the important failure modes of key components. For example, typical structures under multiaxial stresses state, such as aero-engine turbine blades film cooling holes and turbine disk groove connection structures, are usually prioritized for creep rupture failure in high-temperature, high-pressure and high-speed loading environments. At present, the coupling mechanism between temperature and stress fields in complex environments, as well as the rupture mechanisms and life characteristics of structures with multiaxial stresses in service… More >

  • Open Access

    PROCEEDINGS

    Modeling and Simulation of Irradiation Hardening and Creep in Multi Principal Component Alloys

    Yang Chen1, Jing Peng1, Shuo Wang1, Chao Jiang1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012299

    Abstract Nuclear energy demands radiation-resistant metal materials. Multi-principal element alloys (MPEAs) show superior radiation resistance over traditional alloys due to lattice distortion, promising for advanced reactors. However, damage evolution and mechanical performance of irradiated MPEAs under loading are unclear, limiting long-term application. We investigated hardening behavior induced by irradiation defects like dislocation loops and voids in MPEAs using crystal plasticity models and experiments. Here, we developed i) a stochastic field theory-based discrete dislocation dynamics simulation. A novel cross-slip mechanism in irradiated crystals was unveiled through co-linear reactions between dislocations and diamond perfect loops [1]; ii) With… More >

  • Open Access

    ARTICLE

    Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer

    Heng Zhang1,2, Chao Su2,*, Xiaohu Chen1, Zhizhong Song1, Weijie Zhan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2977-3000, 2024, DOI:10.32604/cmes.2024.047972 - 08 July 2024

    Abstract Temperature-induced cracking during the construction of mass concrete is a significant concern. Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment. The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary. However, in the case of tubular concrete structures, where air inlet and outlet are relatively limited, the internal air temperature does not dissipate promptly to the external environment as it rises. To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces… More >

  • Open Access

    ARTICLE

    Static Bending Creep Properties of Glass Fiber Surface Composite Wood

    Shang Zhang1, Jie Wang2, Benjamin Rose5, Yushan Yang3, Qingfeng Ding1, Bengang Zhang4,*, Chunlei Dong2,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2881-2891, 2023, DOI:10.32604/jrm.2023.028160 - 27 April 2023

    Abstract To study the static bending creep properties of glass fiber reinforced wood, glass fiber reinforced poplar (GFRP) specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar (Populus euramevicana, P), the performance of Normal Creep (NC) and Mechanical Sorptive Creep (MSC) of GFRP and their influencing factors were tested and analyzed. The test results and analysis show that: (1) The MOE and MOR of Poplar were increased by 17.06% and 10.00% respectively by the glass fiber surface reinforced composite. (2) The surface reinforced P with glass fiber cloth only exhibits the… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Dynamical Effects Associated with a Plugging String in a Horizontal Well

    Guangsheng Liu1,2, Qingming Gan1,2, Wen Wu3, Haitao Yang1,2, Yiming Lv1,2, Wenhao Cui1,2, Wei Lin4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1203-1214, 2023, DOI:10.32604/fdmp.2023.022022 - 30 November 2022

    Abstract The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield. The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump. Such analysis has been conducted for a real drilling well, taking into account the process of lifting, lowering, unblocking and water plugging. Comparison between field measured data and simulation data indicates that the model is reliable and accurate. The packer creep effect under different pressure differences has also More >

  • Open Access

    ARTICLE

    A Research on the Air Permeability of High Polymer Materials Used to Produce Sports Clothing Fabrics

    Jike Gao1, Fawei Li2,*, Shangjun Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1173-1187, 2023, DOI:10.32604/fdmp.2022.021140 - 30 November 2022

    Abstract Composite fabrics based on Polytetrafluoroethylene (PTFE) polymer displays several notable properties. They are waterproof, windproof, permeable to moisture and thermally insulating at the same time. In the present study, PTFE fibers are used as raw material to make fiber membranes. The film is formed by crisscrossing interconnected fiber filaments and the related air permeability: tensile creep characteristics and other properties are tested. The results show that the pore size, thickness, and porosity of the film itself can affect the moisture permeability of the film. The water pressure resistance of the selected fabric is 8.5 kPa, More >

  • Open Access

    ARTICLE

    Investigation on the Long Term Operational Stability of Underground Energy Storage in Salt Rock

    Jun Zhou1,*, Shijie Fang1, Jinghong Peng1, Qing Li2, Guangchuan Liang1,*

    Energy Engineering, Vol.120, No.1, pp. 221-243, 2023, DOI:10.32604/ee.2022.020317 - 27 October 2022

    Abstract Underground energy storage is an important function of all energy supply systems, and especially concerning the seemingly eternal imbalance between production and demand. Salt rock underground energy storage, for one, is widely applied in both traditional and renewable energy fields; and this particular technique can be used to store natural gas, hydrogen, and compressed air. However, resource diversification and structural complexity make the supply system increasingly uncertain with the passing years, leading to great challenges for energy storage facilities in the present, and perhaps going into the future as well. Hence, it is necessary to… More >

  • Open Access

    PROCEEDINGS

    The Effect of Tempering Duration on the Creep Behavior of the P91 Steels at 600℃

    Jundong Yin1, Lei Wang1, Baoyin Zhu2, Guodong Zhang2, Dongfeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-3, 2022, DOI:10.32604/icces.2022.08750

    Abstract High performance martensitic heat resistant steels are widely used in fossil fuel power plant industry due to because of their good creep resistance at high temperatures. In-depth understanding of the high temperature inelastic deformation mechanism of such steels is crucial to ensure the reliable, safe and efficient operation of the power plant [1]. The martensitic steels have a complex microstructure with a hierarchical arrangement, including a collection of packets in the prior austenite grain, blocks in the packet and laths along with dispersed nanoscale strengthening phases (e.g., MX precipitates and carbides). The purpose of this… More >

  • Open Access

    ARTICLE

    Experimental Investigation of the Creep Behaviour of Glulam Compression-Bending Members

    Yifei Yin, Lirong Qu, Weidong Lu*, Chengshuai Li

    Journal of Renewable Materials, Vol.10, No.6, pp. 1517-1535, 2022, DOI:10.32604/jrm.2022.018149 - 20 January 2022

    Abstract Creep test results of glulam members under compression and bending were studied in this paper. The creep tests were conducted to investigate the influence of the stress level and relative eccentricity on the creep deformation of glulam members. The test results showed that the creep deformation trends of glulam members under long-term compression and bending loading were similar; the creep deformation increased with increases in both the stress level and relative eccentricity. However, the relative creep deformation decreased with the increase in both the stress level and relative eccentricity under long-term loading, and a five-parameter… More > Graphic Abstract

    Experimental Investigation of the Creep Behaviour of Glulam Compression-Bending Members

  • Open Access

    ARTICLE

    Long-Term Loading Test of Reinforced Glulam Beam

    Nan Guo1, Jing Ren1, Ling Li1,*, Yan Zhao2, Mingtao Wu1

    Journal of Renewable Materials, Vol.10, No.1, pp. 183-201, 2022, DOI:10.32604/jrm.2021.015756 - 27 July 2021

    Abstract Due to creep characteristics of wood, long-term loading can cause a significant stress loss of steel bars in reinforced glulam beams and high long-term deflection of the beam midspan. In this study, 15 glulam beams were subjected to a 90-day long-term loading test, and the effects of long-term loading value, reinforcement ratio and prestress level on the stress of steel bars, midspan long-term deflection, and other parameters were compared and analyzed. The main conclusions drawn from this study were that the long-term deflection of the reinforced glulam beams accounted for 22.5%, 20.6%, and 18.2% of… More >

Displaying 1-10 on page 1 of 40. Per Page