Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024

    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open Access

    ARTICLE

    Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks

    Xiaoyu Liu, Yong Hu*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4413-4432, 2024, DOI:10.32604/cmc.2024.053938 - 12 September 2024

    Abstract Multi-label image classification is recognized as an important task within the field of computer vision, a discipline that has experienced a significant escalation in research endeavors in recent years. The widespread adoption of convolutional neural networks (CNNs) has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification. However, in multi-label image classification tasks, it is crucial to consider the correlation between labels. In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features, many existing studies use graph convolutional networks (GCN) for… More >

  • Open Access

    ARTICLE

    Source Camera Identification Algorithm Based on Multi-Scale Feature Fusion

    Jianfeng Lu1,2, Caijin Li1, Xiangye Huang1, Chen Cui3, Mahmoud Emam1,2,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3047-3065, 2024, DOI:10.32604/cmc.2024.053680 - 15 August 2024

    Abstract The widespread availability of digital multimedia data has led to a new challenge in digital forensics. Traditional source camera identification algorithms usually rely on various traces in the capturing process. However, these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms. Convolutional Neural Networks (CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices. However, their performances is not ideal in case of distinguishing between individual devices of the same model, because cameras of the same model typically use the same… More >

  • Open Access

    ARTICLE

    Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks

    Kexin Wang*, Yingdong Gou, Dingrui Xue*, Jiancheng Liu, Wanlong Qi, Gang Hou, Bo Li

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2941-2962, 2024, DOI:10.32604/cmc.2024.052893 - 15 August 2024

    Abstract The collective Unmanned Weapon System-of-Systems (UWSOS) network represents a fundamental element in modern warfare, characterized by a diverse array of unmanned combat platforms interconnected through heterogeneous network architectures. Despite its strategic importance, the UWSOS network is highly susceptible to hostile infiltrations, which significantly impede its battlefield recovery capabilities. Existing methods to enhance network resilience predominantly focus on basic graph relationships, neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS. To address these limitations, we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network (E-MAGCN), designed to augment the adaptability of More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209 - 11 June 2024

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Spatial and Contextual Path Network for Image Inpainting

    Dengyong Zhang1,2, Yuting Zhao1,2, Feng Li1,2, Arun Kumar Sangaiah3,4,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 115-133, 2024, DOI:10.32604/iasc.2024.040847 - 21 May 2024

    Abstract Image inpainting is a kind of use known area of information technology to repair the loss or damage to the area. Image feature extraction is the core of image restoration. Getting enough space for information and a larger receptive field is very important to realize high-precision image inpainting. However, in the process of feature extraction, it is difficult to meet the two requirements of obtaining sufficient spatial information and large receptive fields at the same time. In order to obtain more spatial information and a larger receptive field at the same time, we put forward… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656 - 15 May 2024

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

Displaying 1-10 on page 1 of 50. Per Page