Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Steel Surface Defect Detection Using Learnable Memory Vision Transformer

    Syed Tasnimul Karim Ayon1,#, Farhan Md. Siraj1,#, Jia Uddin2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 499-520, 2025, DOI:10.32604/cmc.2025.058361 - 03 January 2025

    Abstract This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neighbor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting, stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%, significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Deep Learning-Based Mask Identification System Using ResNet Transfer Learning Architecture

    Arpit Jain1, Nageswara Rao Moparthi1, A. Swathi2, Yogesh Kumar Sharma1, Nitin Mittal3, Ahmed Alhussen4, Zamil S. Alzamil5,*, MohdAnul Haq5

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 341-362, 2024, DOI:10.32604/csse.2023.036973 - 19 March 2024

    Abstract Recently, the coronavirus disease 2019 has shown excellent attention in the global community regarding health and the economy. World Health Organization (WHO) and many others advised controlling Corona Virus Disease in 2019. The limited treatment resources, medical resources, and unawareness of immunity is an essential horizon to unfold. Among all resources, wearing a mask is the primary non-pharmaceutical intervention to stop the spreading of the virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) droplets. All countries made masks mandatory to prevent infection. For such enforcement, automatic and effective face detection systems are crucial.… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387 - 27 February 2024

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have… More >

  • Open Access

    ARTICLE

    Effective and Efficient Video Compression by the Deep Learning Techniques

    Karthick Panneerselvam1,2,*, K. Mahesh1, V. L. Helen Josephine3, A. Ranjith Kumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1047-1061, 2023, DOI:10.32604/csse.2023.030513 - 03 November 2022

    Abstract Deep learning has reached many successes in Video Processing. Video has become a growing important part of our daily digital interactions. The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving, distributing, compressing and revealing high-quality video content. In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask, which creatively combines the Deep Learning Techniques on Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN). The video compression method involves the layers are divided into different… More >

  • Open Access

    ARTICLE

    Efficient Grad-Cam-Based Model for COVID-19 Classification and Detection

    Saleh Albahli1,*, Ghulam Nabi Ahmad Hassan Yar2,3

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2743-2757, 2023, DOI:10.32604/csse.2023.024463 - 01 August 2022

    Abstract Corona Virus (COVID-19) is a novel virus that crossed an animal-human barrier and emerged in Wuhan, China. Until now it has affected more than 119 million people. Detection of COVID-19 is a critical task and due to a large number of patients, a shortage of doctors has occurred for its detection. In this paper, a model has been suggested that not only detects the COVID-19 using X-ray and CT-Scan images but also shows the affected areas. Three classes have been defined; COVID-19, normal, and Pneumonia for X-ray images. For CT-Scan images, 2 classes have been… More >

  • Open Access

    ARTICLE

    Human Faces Detection and Tracking for Crowd Management in Hajj and Umrah

    Riad Alharbey1, Ameen Banjar1, Yahia Said2,3,*, Mohamed Atri4, Abdulrahman Alshdadi1, Mohamed Abid5

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6275-6291, 2022, DOI:10.32604/cmc.2022.024272 - 14 January 2022

    Abstract Hajj and Umrah are two main religious duties for Muslims. To help faithfuls to perform their religious duties comfortably in overcrowded areas, a crowd management system is a must to control the entering and exiting for each place. Since the number of people is very high, an intelligent crowd management system can be developed to reduce human effort and accelerate the management process. In this work, we propose a crowd management process based on detecting, tracking, and counting human faces using Artificial Intelligence techniques. Human detection and counting will be performed to calculate the number… More >

  • Open Access

    ARTICLE

    Desertification Detection in Makkah Region based on Aerial Images Classification

    Yahia Said1,2,*, Mohammad Barr1, Taoufik Saidani2,3, Mohamed Atri2,4

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 607-618, 2022, DOI:10.32604/csse.2022.018479 - 09 September 2021

    Abstract Desertification has become a global threat and caused a crisis, especially in Middle Eastern countries, such as Saudi Arabia. Makkah is one of the most important cities in Saudi Arabia that needs to be protected from desertification. The vegetation area in Makkah has been damaged because of desertification through wind, floods, overgrazing, and global climate change. The damage caused by desertification can be recovered provided urgent action is taken to prevent further degradation of the vegetation area. In this paper, we propose an automatic desertification detection system based on Deep Learning techniques. Aerial images are More >

  • Open Access

    ARTICLE

    AI Cannot Understand Memes: Experiments with OCR and Facial Emotions

    Ishaani Priyadarshini*, Chase Cotton

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 781-800, 2022, DOI:10.32604/cmc.2022.019284 - 07 September 2021

    Abstract

    The increasing capabilities of Artificial Intelligence (AI), has led researchers and visionaries to think in the direction of machines outperforming humans by gaining intelligence equal to or greater than humans, which may not always have a positive impact on the society. AI gone rogue, and Technological Singularity are major concerns in academia as well as the industry. It is necessary to identify the limitations of machines and analyze their incompetence, which could draw a line between human and machine intelligence. Internet memes are an amalgam of pictures, videos, underlying messages, ideas, sentiments, humor, and experiences,

    More >

Displaying 1-10 on page 1 of 9. Per Page