Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Modeling & Evaluating the Performance of Convolutional Neural Networks for Classifying Steel Surface Defects

    Nadeem Jabbar Chaudhry1,*, M. Bilal Khan2, M. Javaid Iqbal1, Siddiqui Muhammad Yasir3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 245-259, 2022, DOI:10.32604/jai.2022.038875

    Abstract Recently, outstanding identification rates in image classification tasks were achieved by convolutional neural networks (CNNs). to use such skills, selective CNNs trained on a dataset of well-known images of metal surface defects captured with an RGB camera. Defects must be detected early to take timely corrective action due to production concerns. For image classification up till now, a model-based method has been utilized, which indicated the predicted reflection characteristics of surface defects in comparison to flaw-free surfaces. The problem of detecting steel surface defects has grown in importance as a result of the vast range of steel applications in end-product… More >

  • Open Access

    ARTICLE

    Mobile Communication Voice Enhancement Under Convolutional Neural Networks and the Internet of Things

    Jiajia Yu*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 777-797, 2023, DOI:10.32604/iasc.2023.037354

    Abstract This study aims to reduce the interference of ambient noise in mobile communication, improve the accuracy and authenticity of information transmitted by sound, and guarantee the accuracy of voice information delivered by mobile communication. First, the principles and techniques of speech enhancement are analyzed, and a fast lateral recursive least square method (FLRLS method) is adopted to process sound data. Then, the convolutional neural networks (CNNs)-based noise recognition CNN (NR-CNN) algorithm and speech enhancement model are proposed. Finally, related experiments are designed to verify the performance of the proposed algorithm and model. The experimental results show that the noise classification… More >

  • Open Access

    ARTICLE

    Acknowledge of Emotions for Improving Student-Robot Interaction

    Hasan Han1, Oguzcan Karadeniz1, Tugba Dalyan2,*, Elena Battini Sonmez2, Baykal Sarioglu1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1209-1224, 2023, DOI:10.32604/iasc.2023.030674

    Abstract Robot companions will soon be part of our everyday life and students in the engineering faculty must be trained to design, build, and interact with them. The two affordable robots presented in this paper have been designed and constructed by two undergraduate students; one artificial agent is based on the Nvidia Jetson Nano development board and the other one on a remote computer system. Moreover, the robots have been refined with an empathetic system, to make them more user-friendly. Since automatic facial expression recognition skills is a necessary pre-processing step for acknowledging emotions, this paper tested different variations of Convolutional… More >

  • Open Access

    ARTICLE

    Classification of Gastric Lesions Using Gabor Block Local Binary Patterns

    Muhammad Tahir1,*, Farhan Riaz2, Imran Usman1,3, Mohamed Ibrahim Habib1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 4007-4022, 2023, DOI:10.32604/csse.2023.032359

    Abstract The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems. This generic nature demands the image descriptors to be invariant to illumination gradients, scaling, homogeneous illumination, and rotation. In this article, we devise a novel feature extraction methodology, which explores the effectiveness of Gabor filters coupled with Block Local Binary Patterns in designing such descriptors. We effectively exploit the illumination invariance properties of Block Local Binary Patterns and the inherent capability of convolutional neural networks to construct novel rotation, scale and illumination invariant features. The invariance characteristics of… More >

  • Open Access

    ARTICLE

    Crack Segmentation Based on Fusing Multi-Scale Wavelet and Spatial-Channel Attention

    Peng Geng*, Ji Lu, Hongtao Ma, Guiyi Yang

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 1-22, 2023, DOI:10.32604/sdhm.2023.018632

    Abstract Accurate and reliable crack segmentation is a challenge and meaningful task. In this article, aiming at the characteristics of cracks on the concrete images, the intensity frequency information of source images which is obtained by Discrete Wavelet Transform (DWT) is fed into deep learning-based networks to enhance the ability of network on crack segmentation. To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed. The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module. And the gap between frequency information and… More >

  • Open Access

    ARTICLE

    Earlier Detection of Alzheimer’s Disease Using 3D-Convolutional Neural Networks

    V. P. Nithya*, N. Mohanasundaram, R. Santhosh

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2601-2618, 2023, DOI:10.32604/csse.2023.030503

    Abstract The prediction of mild cognitive impairment or Alzheimer’s disease (AD) has gained the attention of huge researchers as the disease occurrence is increasing, and there is a need for earlier prediction. Regrettably, due to the high-dimensionality nature of neural data and the least available samples, modelling an efficient computer diagnostic system is highly solicited. Learning approaches, specifically deep learning approaches, are essential in disease prediction. Deep Learning (DL) approaches are successfully demonstrated for their higher-level performance in various fields like medical imaging. A novel 3D-Convolutional Neural Network (3D-CNN) architecture is proposed to predict AD with Magnetic resonance imaging (MRI) data.… More >

  • Open Access

    ARTICLE

    End-to-End 2D Convolutional Neural Network Architecture for Lung Nodule Identification and Abnormal Detection in Cloud

    Safdar Ali1, Saad Asad1, Zeeshan Asghar1, Atif Ali1, Dohyeun Kim2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 461-475, 2023, DOI:10.32604/cmc.2023.035672

    Abstract The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around… More >

  • Open Access

    ARTICLE

    A Framework of Deep Optimal Features Selection for Apple Leaf Diseases Recognition

    Samra Rehman1, Muhammad Attique Khan1, Majed Alhaisoni2, Ammar Armghan3, Usman Tariq4, Fayadh Alenezi3, Ye Jin Kim5, Byoungchol Chang6,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 697-714, 2023, DOI:10.32604/cmc.2023.035183

    Abstract Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the… More >

  • Open Access

    ARTICLE

    Optimized Deep Learning Model for Effective Spectrum Sensing in Dynamic SNR Scenario

    G. Arunachalam1,*, P. SureshKumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1279-1294, 2023, DOI:10.32604/csse.2023.031001

    Abstract The main components of Cognitive Radio networks are Primary Users (PU) and Secondary Users (SU). The most essential method used in Cognitive networks is Spectrum Sensing, which detects the spectrum band and opportunistically accesses the free white areas for different users. Exploiting the free spaces helps to increase the spectrum efficiency. But the existing spectrum sensing techniques such as energy detectors, cyclo-stationary detectors suffer from various problems such as complexity, non-responsive behaviors under low Signal to Noise Ratio (SNR) and computational overhead, which affects the performance of the sensing accuracy. Many algorithms such as Long-Short Term Memory (LSTM), Convolutional Neural… More >

  • Open Access

    ARTICLE

    Effective and Efficient Video Compression by the Deep Learning Techniques

    Karthick Panneerselvam1,2,*, K. Mahesh1, V. L. Helen Josephine3, A. Ranjith Kumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1047-1061, 2023, DOI:10.32604/csse.2023.030513

    Abstract Deep learning has reached many successes in Video Processing. Video has become a growing important part of our daily digital interactions. The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving, distributing, compressing and revealing high-quality video content. In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask, which creatively combines the Deep Learning Techniques on Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN). The video compression method involves the layers are divided into different groups for data processing, using… More >

Displaying 1-10 on page 1 of 93. Per Page  

Share Link